Welcome to the EVolution

The future of cars is here.

www.wwcleancities.org
Finally...

If you’ve been waiting for electric vehicles to:

- look like other vehicles
- perform like other vehicles
- travel greater distances
- be made by American manufacturers
- take a bite out of our reliance on oil
- help protect the environment
- avoid gas stations, oil changes, spark plugs, air filters and mufflers
- allow you to use your smart phone to warm up your car
- meet the safety standards of traditional vehicles

Gain everything. Lose nothing.

If any of the above applies to you, then keep reading. This guide was created to make it easy for you to find answers to your questions and give you the facts on owning an electric vehicle.
Table of Contents

Plug-in vehicle glossary 3
Charging has never been easier 4
The Puget Sound region emerges as one of the best places to own an EV 7
14 truths about EVs
 # 1 - EVs go the distance—the truth about range anxiety 9
 # 2 - EVs can save money 10
 # 3 - EVs are fun to drive 13
 # 4 - EVs are safe 13
 # 5 - Public vehicle charging makes driving EVs more convenient 15
 # 6 - EVs are efficient 16
 # 7 - EVs are smart 17
 # 8 - EVs are quiet 17
 # 9 - EVs work well in all kinds of conditions 18
 # 10 - EVs tap into clean Northwest power 21
 # 11 - EVs = zero tailpipe emissions 22
 # 12 - EVs reduce reliance on gas & electricity 24
 # 13 - EV batteries are better than ever 25
 # 14 - EVs are cheaper to maintain 27
Local governments are choosing EVs 28
Business owners embrace EVs 31
Declare your independence from foreign oil 32
EVs currently available or coming soon 34
Resources 36
More auto manufacturers than ever are now making EVs, including Chevrolet, Ford, Honda, Toyota, Nissan, Mitsubishi, Volkswagen, and Tesla.
There is a major EVolution in personal transportation taking place. Your timing to jump in could not be better! You now have more options in more makes and models than ever before. No compromises necessary.

- The price of gas is high and the oil market is volatile.
- EVs now travel long distances thanks to rapid improvements in electric battery technology.
- Battery charging stations being installed along highways and in our communities make driving EVs, even for longer trips, more convenient.
- Many EVs are made by American manufacturers.
- EVs help protect the environment.
- EVs reduce our reliance on oil.
- EVs don’t have all that maintenance - no oil changes, spark plugs, air filters or mufflers.
- EVs meet or exceed all highway safety standards.
Multiple technologies mean multiple choices

(Though it is a bit of an acronym jungle)
Plug-In Vehicle Glossary

EVs or BEVs - Electric Vehicles or Battery Electric Vehicles

Electric vehicles use electricity stored in batteries to propel the vehicle. The battery can be charged by a variety of equipment ranging from a standard outlet to a sophisticated high voltage rapid charger. Like hybrids, some energy is recovered when using the brakes. There is no option to run the vehicle on gasoline.

PHEVs & EREVs - Plug-in Hybrids and Extended-Range EVs

A plug-in hybrid uses a combination of electricity and gasoline to propel itself. The vehicle is equipped with a small gasoline engine that can assist the wheels and provide electricity for the batteries and electric motor.

An extended-range electric vehicle is a variety of PHEV where the gasoline engine only generates electricity and does not propel the vehicle.

Both PHEVs and EREVs have a battery system similar to an EV and can recharge using the same types of equipment. The batteries are smaller in PHEVs and EREVs and therefore charge in less time.

Because short distances represent about 80% of car trips in the U.S., EVs meet the needs of most drivers.
EV drivers often say that one of the most convenient features of an EV is the ability to refuel at home and leave the house each day with a “full tank.”
Currently there are three types (levels) of charging systems available:

Level 1: All plug-in cars come equipped to receive power from standard 110-volt outlets. The charge is delivered slowly, so it can take many hours to deliver a full charge to an all-electric car. Level 1 charging may be perfectly adequate for a plug-in hybrid, for topping off a battery, or for when the vehicle is sitting unused for long periods.

Level 2: Most owners of new all-electric cars will want to have access to a Level 2, 240-volt electricity supply (like what’s used for an electric clothes dryer). This will recharge a vehicle in much less time. Many EVs and chargers can be programmed to start and stop charging at a particular time, keeping track of how much electricity they are “pumping.” Many public charging stations can also be reserved remotely. You will need a 240-volt circuit installed in your garage to charge at this level. Although an electrical permit is required for 240-volt circuit installation, these are inexpensive and simple to process (your electrician will handle that). Purchasing (if not included with the vehicle purchase) and installing home Level 2 charging equipment will cost from $600 to $2,000 for most consumers.

Level 3 (DC fast charge): These chargers are super-high-speed and not currently intended for home use because of high costs and the requirement of a dedicated electrical service. Expect to find these along travel corridors and at select retailers.

Here’s the skinny on charging at home:

<table>
<thead>
<tr>
<th></th>
<th>Level 1 charging</th>
<th>Level 2 charging</th>
<th>DC fast charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>Mobile cord comes with the car; plugs into any 110V socket</td>
<td>Must be purchased (or bundled with car)</td>
<td>Not suitable for home application</td>
</tr>
<tr>
<td>Cost</td>
<td>Included with vehicle</td>
<td>$600-$2,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>Installation</td>
<td>No installation required</td>
<td>Electrical circuit installation required for majority of consumers</td>
<td>Located on thoroughfares and select gas stations</td>
</tr>
<tr>
<td>Range per hour of charge</td>
<td>2-5 miles per hour</td>
<td>10-20 miles per hour</td>
<td>60-80 miles per 20 minutes</td>
</tr>
<tr>
<td>Time required to recharge an empty Nissan LEAF battery</td>
<td>17 hours</td>
<td>7 hours</td>
<td>80% in 15 minutes</td>
</tr>
</tbody>
</table>

Find links to learn more about charging equipment in our Resources section.
Washington State has the oldest operating gas station in the world and now we will be part of the nation’s first “electric highway,” a network of public-access electric vehicle recharging locations along Interstate 5. This will be a key part of the “West Coast Green Highway,” which will provide charging facilities along all 1,381 miles of I-5 from Canada to Mexico.
We live in a place where innovation is a part of our spirit. Starbucks, Boeing, Microsoft, UPS, Nordstrom, REI, Costco and Amazon were all created in Washington.

We are leaders in creating green jobs and adopting new clean technologies and we are doing it again with electric vehicles.

By 2020, market analysts have predicted that more than 2 million EVs will be sold in Washington, Oregon and California.

Several thousand chargers have already been installed and more are coming on line almost daily. That means there will soon be more charging stations than gas stations in the entire state.

The Puget Sound region emerges as one of the best places to own an electric vehicle.
Range anxiety is the fear that a vehicle has insufficient range to reach its destination.

EVs go the distance – the truth about range anxiety

Transportation experts report that more than three quarters of all drivers go fewer than 40 miles in a day. Electric cars easily meet those needs. So why all the talk about range anxiety?

Range anxiety comes from thinking a destination is beyond the fuel supply. You know the feeling: You suddenly need to hurry to an appointment, and then discover that you might not have enough gas to get there. That’s range anxiety.

The best way to avoid range anxiety is to install car-charging equipment at home. It is like having your own fuel pump and you get to start every day with a full tank. You can also plan trips in advance, often using the car’s sophisticated GPS-based computer, which will help match your available charge to the miles you plan to travel.

The rapidly expanding network of charging facilities makes topping off very convenient. Using any number of smart phone apps or the vehicle’s computer, drivers can find chargers at locations such as Park-N-Ride lots, municipal buildings, public parking garages, car dealerships, shopping centers and malls, office buildings, and sports facilities.

But if you still worry about EV range you might want to consider a plug-in hybrid vehicle, which has battery capacity for most daily driving excursions, but includes a small gasoline engine for long-range driving.
“My husband wanted my next car to be an electric car because it was cool. I wanted a car that I felt comfortable driving. With our LEAF we have both, but to be honest I hardly think about the fact that my car is electric. I just think of it as my car.”

Beth Carper, Nissan LEAF Owner

EVs can save money

The price of a car isn’t the true reflection of how much it will cost. A big economic fact to consider is the life of the car. Electricity is inexpensive compared to the high cost of gasoline or diesel, and Washington State enjoys some of the lowest electricity rates in the nation. EVs can deliver their passengers to destinations at a cost of about 2-3 cents per mile, compared to gasoline at a cost of 15-30 cents per mile. That works out to ten times more money per mile for a gasoline-powered car.

Another factor in the total cost of a vehicle is maintenance. In this category, the EV is as good or better, because there are no oil changes, expensive tune ups, or emission control repairs required.

Government incentives can make EVs even more financially attractive. For example, taxpayers may be eligible for a $7,500 federal tax credit for the first-time purchase of an electric car, and in Washington State EV purchases are exempt from the sales tax (worth about $2,500 to $3,000).

Which would you rather use to measure your cost per mile?

- **Cost Per Vehicle Mile – Electricity:** 4 miles per kWh @ $0.08 per kWh versus
- **Gasoline:** 20 miles per gallon @ $4.00 per gallon

Which would you rather use to measure your cost per mile?
Regular Gasoline: $3.949/10
Plus Gasoline: $4.049/10
Premium Gasoline: $4.139/10
Diesel #2: $4.319/10
Electricity: $0.396/10
EVs are fun to drive.
#3

EVs are fun to drive

It is often the first thing you hear from the owner of an EV. Go ahead, test drive one yourself. They are quiet, and they are peppy. Electric motors have instant power, whereas gasoline engines have to build up power. EVs also provide information in real time that will keep your passengers entertained and envious.

#4

EVs are safe

All vehicles, whether gasoline, electric or hybrid, must meet the same federal safety requirements. Both the Nissan LEAF and the Chevy Volt have gone above and beyond federal safety standards, earning the highest possible safety ratings from the Insurance Institute for Highway Safety for the higher level of protection they provide.

The unique design considerations of EVs provide additional safety benefits. The batteries are located in the base of the vehicle, lowering their center of gravity, and reducing the likelihood of rolling over. Similarly, the vehicle frame is reinforced to support the battery systems, further improving their collision performance.

Though EVs have high-voltage batteries on board, they also have extensive safety systems that turn off and isolate the power from battery packs when a collision or short circuit is detected. As an EV owner you can rest assured that you are not compromising safety when driving an electric vehicle.
Public vehicle charging makes driving EVs more convenient

Many businesses and communities are installing charging facilities at convenient locations allowing EV drivers to “top off” in the course of their day. Public charging equipment is easy to find. Similar to the parking spaces reserved for handicapped drivers, chargers are installed at spaces set aside for plug-in vehicles.

Drivers are able to locate these chargers using smart phone apps, the car’s GPS system, and through online tools such as the U.S. Department of Energy’s Alternative Fueling Station Locator. See the Resource section for links to station locator tools.
“After 6 months of driving our Nissan LEAF the only complaint we have is that we didn’t have one 20 years ago!”

– Dean West, Nissan LEAF owner

#6

EVs are efficient

EVs convert 75% of the energy from their batteries to power their wheels. The motor turns off at stops – no idling; and EVs use regenerative braking systems, so energy from braking is captured in the car’s batteries to be used again.

Gasoline-powered engines waste a lot of energy. As little as 40% of the energy in gasoline actually moves the wheels, the rest is simply wasted as heat from the engine. Of the usable 40%, approximately 17% is wasted during engine idling, and roughly 6% is wasted through braking.
#7 EVs are smart
EVs are among the smartest cars on the road. In addition to sophisticated GPS systems that direct drivers to charging stations, they communicate with drivers about their charging state and driving efficiency. Many EVs can even start their cooling or heating systems by phone while still plugged in.

#8 EVs are quiet
So quiet in fact, that starting the car will be a daily reminder of just how much noise you are leaving behind with your new car. You may at first miss that initial vroom-vroom reminder of the gas engine, but you will quickly prefer the peace and quiet or the full sound of the car stereo without background engine noise.
EVs work well in all kinds of conditions

Pacific Northwest drivers want cars that can safely tackle hills, wet roads, and snowy conditions. With a low center of gravity, balanced weight distribution and traction control, EVs have demonstrated excellent adverse-weather handling. Some EVs even come equipped with a special winter driving low gear that decreases the torque from the electric motor to prevent spin-out when accelerating in slippery conditions.

Advanced, on-board computers give you real-time data about energy use and expected range. And, as an extra benefit, you can program your EV to warm up or cool down the interior temperature of the car before you even leave home, using your household electricity and without drawing any charge from your battery.

As with any car, the more experience you have driving the vehicle, the more attuned you will be to the impact of weather, terrain, and climate control on your battery range.
Trying to source photo and see if it is available.
Greenhouse Gas Emissions Per Mile

- U.S. Average Passenger Vehicle: 1.20 Pounds of CO2 per mile (Gasoline)
- Toyota Prius: 0.50 Pounds of CO2 per mile (Gasoline)
- Nissan LEAF: 0.19 Pounds of CO2 per mile (Average NW Power)
"My car can travel 80-100 miles on pure American electrons, no tailpipe. I can drive 40 miles on the same amount of electricity used to manufacture one gallon of gasoline. I love being able to plug in my car when I get home - it’s like plugging in my phone. And I honestly have no idea how much gas costs anymore!"

- Michael Foster, electric car owner

EVs tap into clean, Northwest power

Most electricity in Washington State comes from cleaner hydroelectric power and an increasing supply of renewable resources, such as wind and biomass. So plugging your EV into the Northwest power grid doesn’t generate as much upstream pollution as it does in other parts of the country that rely heavily on fossil fuels to generate electricity. The chart at left depicts the results of an analysis by Seattle-based Sightline Institute, and compares the difference in greenhouse gas emissions from the average U.S. passenger vehicle, the Toyota Prius hybrid, and the Nissan LEAF powered by the average mix of Northwest power. EVs such as the LEAF drawing electricity from the Northwest power grid are climate friendly relative to even the most efficient gasoline-fueled vehicles.
“Combining electric and gas mode, the Volt’s trip computer said I was seeing over 150 mpg at times!”

– Ben Lewis, automedia.com

#11

EVs = zero tailpipe emissions

EVs don’t even have tailpipes! They emit no air pollution or greenhouse gases. Compare that with a conventional gasoline vehicle, which emits 20 pounds of pollution per gallon burned. With roughly two-thirds of the region’s air pollution coming from motor vehicles, EVs are a breath of fresh air to our communities.
EVs reduce reliance on gas & electricity

Drilling and refining oil for gasoline is much more energy-intensive than the energy required to power an EV. Refining gasoline from petroleum requires electricity, as much as 4 to 7.5 kWh per gallon. For every gallon of gasoline we do not need to produce, we save enough energy to power the average EV for 16 to 20 miles.

On average, EVs can travel 16-20 miles with the amount of electricity needed to refine one gallon of gasoline.
#13

EV batteries are better than ever

Batteries used in modern electric vehicles hold 3 times more power than those used in hybrid vehicles, and they’re easier on the environment. Modern electric vehicles like the Nissan LEAF and Chevy Volt use the most efficient batteries on the market, known as lithium-ion. These hold three times the energy and generate twice the power of batteries used in today’s hybrids, and are less toxic than lead or nickel. Though lithium is a valuable earth metal, industry observers report that there is a sufficient supply (including in the U.S.) to support the emerging EV market. Because of their value, the incentive to reuse and recycle these batteries is very high.

Electric vehicle batteries have a much longer life than those used in mobile phones and laptops. EV manufacturers estimate up to 70% of the battery capacity will remain after 10 years of regular use. In fact, battery warranties from EV manufacturers are more competitive than those offered for gasoline engines (for example, the Nissan LEAF has a 100,000 mile battery warranty).
EVs are cheaper to maintain

Fewer moving parts – less maintenance!
An electric motor has fewer moving parts. It does not require oil changes, spark plug changes or filter changes. Manufacturers report that EVs eliminate more than two dozen mechanical components that would normally require maintenance during the life of the vehicle. No more noisy mufflers, broken radiator hoses or alternator belts. And most importantly, less time spent scheduling and accommodating the maintenance of your engine.

Here is how the maintenance requirements for a typical gas and electric version of a compact car compare.

For many modern gasoline cars, the manufacturers recommend an oil and filter replacement every 10,000 miles. Over the 10-year, 150,000 mile life of the vehicle that adds up to over $500 and 7.5 hours. And that’s on oil changes alone.

In contrast, an EV requires much less ongoing maintenance. Take a look at how a typical gasoline car’s needs compare to an EV:

<table>
<thead>
<tr>
<th>Compact Gasoline Car</th>
<th>Compact Electric Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire replacements</td>
<td>Tire replacements</td>
</tr>
<tr>
<td>Brake servicing</td>
<td>Brake servicing</td>
</tr>
<tr>
<td>Shocks</td>
<td>Shocks</td>
</tr>
<tr>
<td>Multiple air filter replacements</td>
<td>Annual battery test</td>
</tr>
<tr>
<td>Multiple spark plug replacements</td>
<td></td>
</tr>
<tr>
<td>Multiple cooling system flushes</td>
<td></td>
</tr>
<tr>
<td>Transmission service</td>
<td></td>
</tr>
<tr>
<td>Valve timing service + timing belt replacement</td>
<td></td>
</tr>
<tr>
<td>Multiple accessory belt replacements</td>
<td></td>
</tr>
<tr>
<td>O2 sensor replacement</td>
<td></td>
</tr>
</tbody>
</table>

As you can see, driving an EV will save you time, money, and inconvenience compared to a gasoline vehicle.
Local governments are choosing EVs.

Municipal fleet managers must balance the needs of their drivers while ensuring their fleets are as efficient, safe, and reliable as possible. So it’s no surprise that municipalities like the City of Seattle, City of Tacoma, King County and Snohomish County all jumped at the opportunity to replace gasoline vehicles with electric. Savings from fuel and maintenance are expected to total $4,000 for each of the 35 Nissan LEAFs the City of Seattle has committed to adding to its fleet. The City of Tacoma estimates that at $3 per gallon for gas, over its 11-year vehicle cycle, a Nissan LEAF will save at least $2,700 more than a Toyota Prius. And as gas prices continue to rise, these savings could easily exceed $6,000 or more.
Business owners embrace EVs

“A national survey in 2011 found that the top concern of fleet managers was rising, volatile fuel prices. As a result, 28% of the fleet managers questioned said they would add EVs to their fleets within a year. These may include plug-in cars, trucks, and specialized vehicles.

- General Electric has pledged to purchase 25,000 new plug-in cars.
- FedEx and UPS have already added a variety of EVs to their fleets.
- Enterprise Rent-A-Car now offers customers a choice to use an all-electric Nissan LEAF at locations in eight cities, including Seattle.
- Staples and Frito-Lay use electric trucks for in-city stop-and-go driving with a top speed of 55 mph. These trucks can carry as much as 16,000 pounds and travel 50 to 120 miles on a single charge.”

— Joe Wiesenfelder, Expert Reviews, cars.com
Of the nearly 20 million barrels of oil consumed each day in the United States, approximately 70% is used for transportation. Our dependence on oil weakens the U.S. economy by sending hundreds of billions of dollars per year out of the country and represents more than half of our trade deficit. Consumers and businesses are impacted through volatile price hikes and the use of so much fossil fuel emits large amounts of air pollution and greenhouse gases.

Declare your independence from oil—purchase an EV.
EVs currently available or coming soon

Battery Electric Vehicles
- BMW ActiveE
- Coda Automotive Sedan
- Ford Focus EV
- Ford Transit Connect Electric
- Honda Fit EV
- Mitsubishi i-MiEV
- Nissan LEAF
- Smart Fortwo Electric Drive
- Tesla Motors Roadster Sport 2.5
- Tesla Model S
- THINK City
- Toyota RAV4 EV

Plug-in Hybrid and Extended Range Electric Vehicles
- Chevy Volt
- Fisker Karma S
- Ford Fusion Plug-In Hybrid
- Ford C-Max Energi
- Toyota Prius Plug-In
- Via Motors VTRUX
Resources

Find charging stations:
Visit the U.S. Department of Energy's Alternative Fueling Station Locator:
afdc.energy.gov/afdc/locator/stations/
Or, search “electric charging station” followed by the city or location name in Google Maps.

Learn more about electric vehicles and charging options:
goelectricdrive.com
pluginamerica.org
cleancities.energy.gov

Get the latest news and information on electric cars:
gas2.org
plugincars.com
You know you want one.

Be a part of the EVolution.

It starts with the simple act of taking one for a ride.

Written and produced by WSU Extension Energy & PRR under contract to Western Washington Clean Cities.

This material is based upon work supported by the Department of Energy under Award Number DE-EE0002020.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
What’s not to get amped up about?

- Reduced demand for oil
- Modern innovation
- High tech
- Cleaner air
- Affordable
- Fun to drive
- Quiet