2014 Air Quality Data Summary

July 2014

Working Together for Clean Air
Table of Contents

Table of Contents ... i
List of Figures .. ii
List of Maps ... iii
List of Tables ... iii
Appendix – Data Tables .. iii
Executive Summary .. 1
Monitoring Network ... 3
Air Quality Index ... 6
Particulate Matter .. 9
Particulate Matter – PM\textsubscript{2.5} Speciation and Aethalometers 19
Ozone .. 21
Nitrogen Dioxide ... 25
Carbon Monoxide .. 27
Sulfur Dioxide .. 29
Lead ... 31
Visibility ... 32
Air Toxics ... 36
Definitions ... 54
List of Figures

Figure 1: Number of Days Air Quality Rated As "Good" Per AQI .. 8
Figure 2: Days Exceeding the PM2.5 Health Goal at One or More Monitoring Sites 11
Figure 3: Daily PM$_{2.5}$ for King County ... 14
Figure 4: Daily PM$_{2.5}$ for Kitsap County .. 14
Figure 5: Daily PM$_{2.5}$ for Pierce County .. 15
Figure 6: Daily PM$_{2.5}$ for Snohomish County .. 15
Figure 7: Annual PM$_{2.5}$ for King County ... 16
Figure 8: Annual PM$_{2.5}$ for Kitsap County ... 17
Figure 9: Annual PM$_{2.5}$ for Pierce County .. 17
Figure 10: Annual PM$_{2.5}$ for Snohomish County .. 18
Figure 11: Annual PM$_{2.5}$ Black Carbon .. 20
Figure 12: Ozone for Puget Sound Region .. 24
Figure 13: Ozone (O$_3$) for Puget Sound Region Mar-September 2014 ... 24
Figure 14: Annual Nitrogen Dioxide (NO$_2$) (1995-2005) and Reactive Nitrogen (NO$_y$ – NO) (2007-
Present) ... 26
Figure 15: 2010 1-Hour Maximum Standard for Nitrogen Dioxide (NO$_2$) (1995-2005) and Reactive
Nitrogen (NO$_y$ – NO) (2007-Present) ... 26
Figure 16: Carbon Monoxide (CO): 2nd Highest Annual 8-hour Value for Puget Sound Region 28
Figure 17: Sulfur Dioxide (SO$_2$) 1-Hour Maximum Concentrations (3-Year Average of the 99th
Percentile) for the Puget Sound Region ... 30
Figure 18: Puget Sound Visibility .. 33
Figure 19: King County Visibility .. 33
Figure 20: Kitsap County Visibility ... 34
Figure 21: Pierce County Visibility ... 34
Figure 22: Snohomish County Visibility .. 35
Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 39
Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 40
Figure 25: 1,3-butadiene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 41
Figure 26: Cadmium Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014 42
Figure 27: Formaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 43
Figure 28: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 44
Figure 29: Hexavalent Annual Average Potential Cancer Risk at Beacon Hill, 2005-2013 45
Figure 30: Acetaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 46
Figure 31: Arsenic Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014 47
Figure 32: Naphthalene Annual Average Potential Cancer Risk at Beacon Hill, 2008-2014 49
Figure 33: Dichloromethane Annual Average Potential Cancer Risk at Beacon Hill, 2007-2014 50
Figure 34: Ethylbenzene Annual Average Potential Cancer Risk at Beacon Hill, 2007-2014 51
Figure 35: Nickel Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014 52
Figure 36: Tetrachloroethylene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014 ... 53
List of Maps
Map 1: Active Air Monitoring Network for 2014 ... 3
Map 2: The 98th Percentile 3-Year Average Daily PM$_{2.5}$ Concentrations for 2014 12
Map 3: Ozone 3-year Average of 4th Highest 8-hr Value for 2014 22

List of Tables
Table 1: Air Quality Monitoring Network ... 4
Table 2: AQI Ratings for 2014 ... 7
Table 3: 2014 Beacon Hill Air Toxics Ranking .. 37
Table 4: 2014 Calculation and Breakpoints for the Air Quality Index (AQI) 54

Appendix – Data Tables
Air Quality Index King County (1980-2014) .. A-1
Air Quality Index Kitsap County (1990-2014) ... A-3
Air Quality Index Pierce County (1980-2014) ... A-5
Air Quality Index Snohomish County (1980-2014) ... A-7
Monitoring Methods Used from 1999 to 2014 in the Puget Sound air shed A-9
Historical Air Quality Monitoring Network .. A-10
Burn Bans 1988-2014 .. A-14
Particulate Matter (PM$_{2.5}$) – Federal Reference Sampling Method A-15
Particulate Matter (PM$_{2.5}$) – Continuous TEOM Sampling Method A-16
Particulate Matter (PM$_{2.5}$) – Continuous Nephelometer Sampling Method A-17
PM$_{2.5}$ Speciation Analytes Monitored in 2014 ... A-18
PM$_{2.5}$ Black Carbon .. A-19
Ozone (8-hour concentration) ... A-20
Reactive Nitrogen .. A-21
Carbon Monoxide .. A-22
Sulfur Dioxide ... A-23
2014 Beacon Hill Air Toxics Statistical Summary for Air Toxics A-24
2014 Air Toxics Unit Risk Factors ... A-25
2014 Beacon Hill Potential Cancer Risk Estimates, per 1,000,000, 95th Percentile A-26
Non-cancer Reference Concentrations (RfC) and Hazard Indices >1 A-27
Air Toxics Trends Statistical Summary ... A-28
Air Quality Standards and Health Goals .. A-29
The 2014 Air Quality Data Summary is available for viewing or download on the internet at:

www.pscleanair.org

Links to additional documents for download are also available at the web site.

This material is available in alternate formats for people with disabilities. Please call Joanna Cruse at (206) 689-4067 (1-800-552-3565, ext. 4067).
Executive Summary

The Puget Sound Clean Air Agency (the Agency) summarizes air quality data from our core monitoring network every year. This report summarizes regional air quality by presenting air quality monitoring results for six criteria air pollutants and air toxics. The U.S. Environmental Protection Agency (EPA) sets national ambient air quality standards (NAAQS) for the criteria pollutants. The criteria pollutants are:

- Particulate Matter (particles 10 micrometers and 2.5 micrometers in diameter)
- Ozone
- Nitrogen Dioxide
- Carbon Monoxide
- Sulfur Dioxide
- Lead (monitoring discontinued due to very low levels)

Air toxics are defined by Washington State and the Agency to include hundreds of chemicals and compounds that are associated with a broad range of adverse health effects, including cancer. Many air toxics are a component of either particulate matter or volatile organic compounds (a precursor to ozone). The Air Quality Index (AQI) is a nationwide reporting standard for the criteria pollutants. The AQI is used to relate air quality levels to health effects in a simplified way. “Good” AQI days continued to dominate our air quality in 2014. However, air quality degrades into “moderate” or “unhealthy for sensitive groups” for brief periods.

The Agency and the Washington State Department of Ecology (Ecology) work together to monitor air quality within the Puget Sound region. The Agency’s jurisdiction includes King, Snohomish, Pierce, and Kitsap counties. Real-time air monitoring data are available for pollutants at pscleanair.org/airquality/ourairquality/Pages/currentaq.aspx. To receive the Agency’s most updated news and stay current on air quality issues in King, Kitsap, Pierce and Snohomish counties, visit pscleanair.org/contact/Pages/connect.aspx and select your favorite news feed method. Friends and subscribers receive the latest on air quality news and updates on projects in the Puget Sound region. You can also find us on Facebook and Twitter.

Data included in this report are for our core monitoring network. We also perform local, seasonal monitoring studies – you can see reports on these study results at the library on our website at http://www.pscleanair.org/.

The Agency and Ecology continued to monitor the region’s air quality in 2014. Over the last two decades, many pollutant levels have declined and air quality has improved. While air quality is improving, we face new challenges. The Environmental Protection Agency (EPA) regularly revises national ambient air quality standards as directed by the Clean Air Act to protect public health.

2 The Agency’s jurisdiction covers King, Kitsap, Pierce, and Snohomish Counties in Washington State.
Elevated fine particle levels pose the greatest air quality challenge in our jurisdiction. While fine particle levels met EPA’s health-based standard of 35 micrograms per cubic meter in 2014, sites in three of four counties (King, Pierce and Snohomish) continued to exceed the Agency’s more stringent local PM$_{2.5}$ health goal of 25 micrograms per cubic meter. In 2014, the Kitsap County monitor met the Agency’s local PM$_{2.5}$ health goal.

Ozone levels remain a concern in our region. The Enumclaw Mud Mountain monitor has the highest regional ozone concentrations. In December 2014, the EPA proposed a more protective health-based primary standard with a final rule expected in fall 2015.

Air toxics were measured at levels that posed adverse health effects. These health effects include, but are not limited to, increased cancer risk, respiratory, and developmental effects.

Increasingly, our air quality monitoring program is moving towards local, short-term studies that inform on a very local scale what air quality is like in communities with specific impacts (for example, communities located near major roadways). These studies, using new sensor technology, are available on our website in the “Library” section.
Monitoring Network

The Agency and Ecology operated the Puget Sound region’s monitoring network in 2014. The network is comprised of meteorological, pollutant-specific equipment, and equipment for special studies. Data from the network are normally collected automatically via the Ecology data network, or in some cases, collected manually by field staff. Monitoring stations are located in a variety of geographic locations in the Puget Sound region. Staff uses EPA criteria to site monitors to ensure a consistent and representative picture of air quality.

Map 1 and Table 1 show King, Pierce, Snohomish, and Kitsap County monitoring sites used in 2014. A more interactive map is available at http://www.pscleanair.org/airquality/ourairquality/Pages/NetworkMap.aspx.

Map 1: Active Air Quality Monitoring Station Locations 2014

* The Ozone site (FG) located in Mount Rainier National Park is not shown on this map.
Table 1: Air Quality Monitoring Network Parameters 2014

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Location</th>
<th>PM$_{2.5}$ ref</th>
<th>PM$_{2.5}$ Spec</th>
<th>PM$_{2.5}$ FEM</th>
<th>PM$_{2.5}$ ls</th>
<th>PM$_{2.5}$ bc</th>
<th>O$_3$</th>
<th>SO$_2$</th>
<th>NO$_Y$</th>
<th>CO</th>
<th>b_{sp}</th>
<th>Wind</th>
<th>Temp</th>
<th>AT</th>
<th>Vsby</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ</td>
<td>Queen Anne Hill, 400 W Garfield St, Seattle (photo/visibility included)</td>
<td></td>
<td>a, d, f</td>
</tr>
<tr>
<td>AZ</td>
<td>Olive Way & Boren Ave, 1624 Boren Ave, Seattle</td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>BK</td>
<td>10th & Weller, Seattle</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>BW</td>
<td>Beacon Hill, 4103 Beacon Ave S, Seattle</td>
<td></td>
<td>b, d, f</td>
</tr>
<tr>
<td>CE</td>
<td>Duwamish, 4401 E Marginal Way S, Seattle</td>
<td></td>
<td>a, e</td>
</tr>
<tr>
<td>CW</td>
<td>James St & Central Ave, Kent</td>
<td></td>
<td>b, d</td>
</tr>
<tr>
<td>DB</td>
<td>17171 Bothell Way NE, Lake Forest Park</td>
<td></td>
<td>b, d, f</td>
</tr>
<tr>
<td>DC</td>
<td>305 Bellevue Way NE, Bellevue</td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>DD</td>
<td>South Park, 8201 10th Ave S, Seattle</td>
<td></td>
<td>b, e, f</td>
</tr>
<tr>
<td>DF</td>
<td>30525 SE Mud Mountain Road, Enumclaw</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>DG</td>
<td>42404 SE North Bend Way, North Bend</td>
<td></td>
<td>c, d, f</td>
</tr>
<tr>
<td>DN</td>
<td>20050 SE 56th, Lake Sammamish State Park, Issaquah</td>
<td></td>
<td>b, d</td>
</tr>
<tr>
<td>EQ</td>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma</td>
<td></td>
<td>a, e</td>
</tr>
<tr>
<td>ER</td>
<td>South Hill, 9616 128th St E, Puyallup</td>
<td></td>
<td>b, f</td>
</tr>
<tr>
<td>ES</td>
<td>7802 South L St, Tacoma</td>
<td></td>
<td>b, f</td>
</tr>
<tr>
<td>FF</td>
<td>Tacoma Indian Hill, 5225 Tower Drive NE, northeast Tacoma</td>
<td></td>
<td>b, f</td>
</tr>
<tr>
<td>FG</td>
<td>Mt Rainier National Park, Jackson Visitor Center</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>IG</td>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td></td>
<td>b, d</td>
</tr>
<tr>
<td>II</td>
<td>6120 212th St SW, Lynnwood</td>
<td></td>
<td>b, d</td>
</tr>
<tr>
<td>JO</td>
<td>Darrington High School, 1085 Fir St, Darrington</td>
<td></td>
<td>d, f</td>
</tr>
<tr>
<td>QK</td>
<td>Spruce, 3250 Spruce Ave, Bremerton</td>
<td></td>
<td>b, f</td>
</tr>
</tbody>
</table>
Monitoring Network Parameters

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Parameter</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊗</td>
<td>Station operated by Ecology</td>
<td>SO₂</td>
<td>Sulfur Dioxide</td>
<td></td>
</tr>
<tr>
<td>⬤</td>
<td>Indicates parameter currently monitored</td>
<td>NOₓ</td>
<td>Nitrogen Oxides</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ ref</td>
<td>Particulate matter <2.5 micrometers (reference)</td>
<td>CO</td>
<td>Carbon Monoxide</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ Spec</td>
<td>Speciation</td>
<td>bʻsp</td>
<td>Light scattering by atmospheric particles (nephelometer)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ FEM</td>
<td>Particulate matter <2.5 micrometers (teom-fdms continuous)</td>
<td>Wind</td>
<td>Wind direction and speed</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ ls</td>
<td>Particulate matter <2.5 micrometers (light scattering nephelometer continuous)</td>
<td>Temp</td>
<td>Air temperature (relative humidity also measured at BW, IG, ES)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ bc</td>
<td>Particulate matter <2.5 micrometers black carbon (light absorption aethalometer)</td>
<td>AT</td>
<td>Air Toxics</td>
<td></td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone (May through September except Beacon Hill and Mt Rainier)</td>
<td>VSBY</td>
<td>Visual range (light scattering by atmospheric particles)</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>PHOTO</td>
<td>Visibility (camera)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Urban Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Suburban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Agency conducted monitoring as early as 1965. A summary of the monitoring stations and parameters used over the history of the program is on page A-10 of the Appendix. The network changes periodically because the Agency and Ecology regularly re-evaluate monitoring objectives, resources and logistics.

Page A-9 of the Appendix shows a list of the methods used for monitoring the criteria pollutants. Additional information on these methods is available at EPA’s website at epa.gov/ttn/amtic/. Information on air toxics monitoring methods is available at epa.gov/ttn/amtic/airtox.html.
Air Quality Index

EPA established the air quality index (AQI) as a simplified index for reporting daily air quality. It tells you how clean or polluted your air is and what associated health effects might be a concern for you. The AQI focuses on health effects that you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide and nitrogen dioxide.

Think of the AQI as a yardstick that runs from 0 to 500. As the AQI increases, the level of air pollution and the health concern increases. An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered unhealthy, first for certain sensitive groups of people, then for everyone as AQI values get higher.

The purpose of the AQI is to help people understand what local air quality means to health. To make it easier to understand, the AQI is divided into six categories:

<table>
<thead>
<tr>
<th>Air Quality Index (AQI) Values</th>
<th>Levels of Health Concern</th>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the AQI is:</td>
<td>...air quality condition is:</td>
<td>...look for this color:</td>
</tr>
<tr>
<td>0 – 50</td>
<td>Good</td>
<td>Green</td>
</tr>
<tr>
<td>51 – 100</td>
<td>Moderate</td>
<td>Yellow</td>
</tr>
<tr>
<td>101 – 150</td>
<td>Unhealthy for Sensitive Groups</td>
<td>Orange</td>
</tr>
<tr>
<td>151 – 200</td>
<td>Unhealthy</td>
<td>Red</td>
</tr>
<tr>
<td>201 – 300</td>
<td>Very Unhealthy</td>
<td>Purple</td>
</tr>
<tr>
<td>301 - 500</td>
<td>Hazardous</td>
<td>Maroon</td>
</tr>
</tbody>
</table>

GOOD AQI is 0 – 50: Air pollution poses little or no risk.

MODERATE AQI is 51 – 100: Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms.
UNHEALTHY FOR SENSITIVE GROUPS AQI is 101 – 150: Although the general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air.

UNHEALTHY AQI is 151 – 200: Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects.

VERY UNHEALTHY AQI is 201 – 300: This would trigger a health alert signifying that everyone may experience more serious health effects.

HAZARDOUS is AQI greater than 300: This would trigger a health warning of emergency conditions. The entire population is more likely to be affected.

Table 2 shows the AQI breakdown by percentage in each category for 2014. Snohomish County registered the highest daily AQI value of 133 on July 5th, which was PM$_{2.5}$. PM$_{2.5}$ normally determines the AQI in the Puget Sound area on days considered unhealthy for sensitive groups.

Table 2: AQI Ratings for 2014

<table>
<thead>
<tr>
<th>County</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for Sensitive Groups</th>
<th>Unhealthy</th>
<th>Highest AQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snohomish</td>
<td>80.3 %</td>
<td>18.6 %</td>
<td>1.1 %</td>
<td>0 %</td>
<td>133</td>
</tr>
<tr>
<td>King</td>
<td>72.3 %</td>
<td>27.1 %</td>
<td>0.5 %</td>
<td>0 %</td>
<td>124</td>
</tr>
<tr>
<td>Pierce</td>
<td>83.8 %</td>
<td>15.6 %</td>
<td>0.5 %</td>
<td>0 %</td>
<td>114</td>
</tr>
<tr>
<td>Kitsap</td>
<td>97.0 %</td>
<td>3.0 %</td>
<td>0 %</td>
<td>0 %</td>
<td>70</td>
</tr>
</tbody>
</table>

EPA’s main intent with development of the AQI is that it is used as a daily indicator or forecast of air quality – it is most useful when used this way. This local, almost-real-time information can be found here: pscleanair.org/airquality/ourairquality.

Most days in the Puget Sound region are in the “Good” category, but local meteorological conditions, along with polluting sources, cause levels to rise into “Moderate” or above. See the appendix for more information on the AQI.
Figure 1: Number of Days Air Quality Rated As "Good" Per AQI

Figure 1 (above) shows the number of days that the AQI fell into the Good category for each of the four counties of our jurisdiction. In 2012 the EPA tightened the annual PM$_{2.5}$ standard, therefore the AQI calculation changed. The drop in number of “Good” AQI days is a result of the AQI calculation change, not a degradation of regional air quality.

Pages A-1 through A-8 of the Appendix present summaries for each county which include “good”, “moderate”, “unhealthy for sensitive groups”, and “unhealthy” days from 1990 to 2014.
"Particulate matter," also known as particle pollution or PM, is a complex mixture of extremely small particles and liquid droplets. Particle pollution consists of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles.

EPA groups particle pollution into two categories. "Inhalable coarse particles," such as those found near roadways and dusty industries, are larger than 2.5 micrometers and smaller than 10 micrometers in diameter. "Fine particles," such as those found in smoke and haze, are 2.5 micrometers in diameter and smaller.

PM$_{10}$

The Agency ceased direct PM$_{10}$ monitoring in 2006 to focus its efforts on PM$_{2.5}$ monitoring. For a historic look at Puget Sound area PM$_{10}$ levels, please see pages 32-35 of the 2007 data summary which is available upon request.

PM$_{2.5}$ Health and Environmental Effects

An extensive body of scientific evidence shows that exposure to particle pollution is linked to a variety of significant health problems, such as increased hospital admissions and emergency department visits for cardiovascular and respiratory problems, including non-fatal heart attacks and premature death. Older adults, children, pregnant women, and those with pre-existing health conditions are more at risk from exposure to particle pollution. Particle pollution also contributes to haze in cities and some of our nation’s most treasured national parks.

Fine particles are emitted directly from a variety of sources, including wood burning (both outside, and in wood stoves and fireplaces), vehicles and industry. They also form when gases from some of these same sources react in the atmosphere.

PM2.5– Federal Reference Method and Continuous Methods

Fine particulate matter (PM$_{2.5}$) is measured using a variety of methods to ensure quality and consistency. EPA defined the federal reference method (FRM) to be the method used to determine PM$_{2.5}$ concentrations. The reference method is a filter-based method. EPA further defined several federal equivalent methods (FEM), which are continuous instruments operated under specific standard operating procedures. The continuous FEM’s advantage is that it provides highly time resolved data (hourly averages).

The Agency uses the FRM, the FEM and a Nephelometer estimation method to provide data. These methods determine fine particulate matter concentration differently:

- The FRM method involves pulling in air (at a given flow rate) for a 24-hour period and collecting particles of a certain size (in this case PM$_{2.5}$) on a filter. The filter is weighed and the
mass is divided by air volume (determined from flow rate and amount of time) to provide concentration. Particles on the filter can later be analyzed for more information about the types of particulate matter.

- The tapered element oscillating microbalance (TEOM-FDMS) method measures mass and uses a filter dynamic measurement system to eliminate moisture measurements from the sample, allowing the mass to be converted. This is a Federal Equivalent Method (FEM) for PM$_{2.5}$.
- The nephelometer uses scattering of light in a photomultiplier tube, which is then compared to Reference and Equivalent method data to produce an estimate of PM$_{2.5}$. While light scattering has been proven to correlate well with PM$_{2.5}$, this is an “unofficial” method using a surrogate.

The Agency and Ecology work together to evaluate the TEOM-FDMS technology as compared to the reference method. Ecology reports the data to EPA as full equivalent method data.

PM$_{2.5}$ Daily Federal Standard and Health Goal

The EPA set a daily health-based fine particle standard of 35 micrograms per cubic meter (μg/m3). Monitors in all four counties met this standard in 2014. In addition to the federal standard, our Board of Directors adopted a more stringent health goal in 1999, based on recommendations from our Particulate Matter Health Committee. Monitors in King, Pierce and Snohomish exceeded the local health goal of 25 μg/m3 during the 2014 winter season. Our monitor in Kitsap County achieved the local health goal.

Figure 2 shows the number of days the health goal was exceeded annually in the region, from 2000 to 2014. The shading demonstrates that our highest fine particulate days overwhelmingly take place during the winter wood heating months. While the graph indicates that we have made progress reducing the number of days we exceed the health goal, it also shows that we are falling short of our goal of having zero days exceeding the health goal, especially during winter months.
Figure 2: Days Exceeding the PM2.5 Health Goal at One or More Monitoring Sites

Map 2 shows the 98th percentile of the 3-year average of daily PM$_{2.5}$ concentrations. The map includes only those monitoring sites with three years of complete data from 2012 to 2014. This map incorporates data collected from federal reference, federal equivalent, and nephelometer estimate methods.
Map 2: The 98th Percentile 3-Year Average Daily PM$_{2.5}$ Concentrations for 2014
Figures 3 through 6 show daily 98th percentile 3-year averages at each monitoring station in King, Kitsap, Pierce, and Snohomish Counties compared to the current daily federal standard – all are below the standard in 2014. Points on the graphs represent averages for three consecutive years. For example, the value for 2014 is the average of the 98th percentile daily concentration for 2012, 2013, and 2014. These figures incorporate data collected from federal reference, federal equivalent, and nephelometer estimate methods.

Figure 4 does not include a three-year average for Kitsap County in 2008-2010, 2012-2014 because the monitor did not meet data completeness criteria, and the monitoring site was moved. Kitsap County data shows that PM2.5 levels are below the federal standard.

Statistical summaries for 98th percentile daily concentrations for 2014 data are provided on page A-15 through A-17 of the Appendix.
Figure 3: Daily PM$_{2.5}$ for King County

3-year average of the 98th percentile of daily concentrations
PM$_{2.5}$ Reference and Continuous Methods

Figure 4: Daily PM$_{2.5}$ for Kitsap County

3-year average of the 98th percentile of daily concentrations
PM$_{2.5}$ Continuous Method (BAM/TEOM/neph)

Note: 75% of data is required to calculate 98th percentile. Insufficient data available for 2008 so 3 year calculation not available for 2008-2010. 2011-2014 data are TEOM-FEM. Meadowdale site ended 4/30/12, Spruce site began 5/1/2012, 3 year calculation not available.
Figure 5: Daily PM$_{2.5}$ for Pierce County

3-year average of the 98th percentile of daily concentrations
PM$_{2.5}$ Reference and Continuous Methods

Note: All South Hill data are FRM from 2000-2014. Alexander Avenue data are FRM from 1999-2002 and nephelometer from 2003-2014. South Hill data are FRM from 1999-2002 and nephelometer from 2003-2004 and 2006-2014; incomplete nephelometer data was collected from South Hill in 2005.

Figure 6: Daily PM$_{2.5}$ for Snohomish County

3-year average of the 98th percentile of daily concentrations
PM$_{2.5}$ Reference and Continuous Methods

PM$_{2.5}$ Annual Federal Standard

Figures 7 through 10 show 3-year annual averages at each monitoring station for King, Kitsap, Pierce and Snohomish Counties. In 2012, the EPA strengthened the annual standard from 15 micrograms per cubic meter to 12 micrograms per cubic meter. All counties have levels below the annual standard of 12 micrograms per cubic meter and all counties are in attainment for the annual standard. Figure 8 does not show any 2008, 2009, 2010, 2012-2014 data for Kitsap County because the monitor did not achieve data completeness criteria or the monitoring site was relocated.

Figures 7 through 10 show data from the federal reference method (FRM) and continuous method monitors. The federal standard is based on a 3-year average, so each value on the graph is an average for three consecutive years. For example, the value shown for 2014 is the average of the annual averages for 2012, 2013, and 2014.

Figure 7: Annual PM$_{2.5}$ for King County

Figure 8: Annual PM$_{2.5}$ for Kitsap County

3-Year Average of the Annual Mean
Continuous Method

Figure 9: Annual PM$_{2.5}$ for Pierce County

3-Year Average of the Annual Mean
Reference and Continuous Methods

PM$_{2.5}$ Continuous Data and Seasonal Variability

Continuous monitoring data provide information on how concentration levels vary throughout the year. For example, many sites have elevated PM$_{2.5}$ levels during the winter when residential burning and air stagnations are at their peak, but have low levels of PM$_{2.5}$ during the summer. For more detailed information on continuous data, please see the Airgraphing tool at http://airgraphing.pscleanair.org/ to plot the sites and timeframes of interest.
Particulate Matter – PM$_{2.5}$ Speciation and Aethalometers

Although there are no regulatory requirements to go beyond measuring the total mass of fine particulate matter, it is important to know the chemical makeup of particulate matter in addition to its mass. Knowledge about the composition of fine particulate can help to guide emission reduction strategies. Information on fine particulate composition helped guide the Agency’s commitment to reduce wood smoke and diesel particulate emissions.3,4,5

Speciation Monitoring and Source Apportionment

Speciation monitoring involves determining the individual fractions of metals and organics in fine particulate matter on different types of filters. Speciation filters are analyzed to determine the makeup of fine particulate at that site. Over 40 species are measured at speciation monitors in the area. These data are used in source apportionment models to estimate contributing sources to PM$_{2.5}$. Source apportionment models use statistical patterns in data to identify likely pollution sources and then estimate how much each source is contributing at each site.

Ecology conducted speciation monitoring at three monitoring sites in the Puget Sound region in 2014:

- Seattle Beacon Hill – typical urban impacts, mixture of sources (speciation samples collected every third day, operated by Ecology)
- Tacoma South L – urban residential area, impacts from residential wood combustion (speciation samples collected every sixth day, operated by Ecology)
- Marysville – residential area, impacts from wood combustion (speciation samples collected every sixth day, operated by Ecology)

Scientific and health researchers have analyzed speciation data from these sites. In addition to using speciation data for concentrations of specific species or source apportionment modeling, the Agency uses them to qualitatively look at the makeup of fine particulate at our monitoring sites. For a list of PM$_{2.5}$ analytes measured at these sites, please see Appendix A-18.

Aethalometer Data

Aethalometers provide information about the carbon fraction of fine particulate matter. Aethalometers continuously measure light absorption to estimate carbon concentrations using two channels, black carbon (BC) and ultraviolet (UV). Concentrations from the black carbon channel correlate well with elemental carbon (EC) speciation data. Qualitatively, the difference between the UV and BC channel (UV-BC) correlates well with organic carbon (OC) speciation data. Elemental and organic carbons are related to diesel particulate, wood smoke particulate and particulate from other

3Puget Sound Air Toxics Evaluation, October 2003.
5Ogulei, D. WA State Dept of Ecology (2010). “Sources of Fine Particles in the Wapato Hills-Puyallup River Valley PM$_{2.5}$ Nonattainment Area”. PublicationNumber 10-02-009.
combustion sources. Unfortunately, neither is uniquely attributed to a particular combustion type – so the information gained from aethalometer data is largely qualitative.

The Agency maintains aethalometers at monitoring sites with high particulate matter concentrations, as well as sites with speciation data, so that the different methods to measure carbon may be compared. For more information on aethalometers, refer to our aethalometer monitoring paper which is available upon request.

Figure 11 shows annual average trending of black carbon concentrations. Since 2003, the general trend shows reducing BC levels. A statistical summary of aethalometer black carbon data is presented on page A-19 of the Appendix.

Figure 11: Annual PM$_{2.5}$ Black Carbon

![Annual PM$_{2.5}$ Black Carbon](chart)

Urban Air Monitoring Strategy – Preliminary Results Using Aethalometer™ Carbon Measurements for the Seattle Metropolitan Area
Ozone

Ozone is a summertime air pollution problem in our region and is not directly emitted by pollutant sources. Ozone forms when photochemical pollutants react with sunlight. These pollutants are called ozone precursors and include volatile organic compounds (VOC) and nitrogen oxides (NOₓ), with some influence by carbon monoxide (CO). These precursors come from anthropogenic sources such as mobile sources and industrial and commercial solvent use, as well as natural sources (biogenic). Ozone levels are usually highest in the afternoon because of the intense sunlight and the time required for ozone to form in the atmosphere. The Washington State Department of Ecology conducts the ozone monitoring in our counties.

People sometimes confuse upper atmosphere ozone with ground-level ozone. Stratospheric ozone helps to protect the earth from the sun’s harmful ultraviolet rays. In contrast, ozone formed at ground level is unhealthy. Elevated concentrations of ground-level ozone can cause reduced lung function and respiratory irritation, and can aggravate asthma.⁷ Ozone has also been linked to immune system impairment.⁸ People with respiratory conditions should limit outdoor exertion if ozone levels are elevated. Even healthy individuals may experience respiratory symptoms on a high-ozone day. Ground-level ozone can also damage forests and agricultural crops, interfering with their ability to grow and produce food.⁹

Most ozone monitoring stations are located in rural areas of the Puget Sound region, although the precursor chemicals that react with sunlight to produce ozone are generated primarily in large metropolitan areas (mostly by cars and trucks). The photochemical formation of ozone takes several hours. Thus, the highest concentrations of ozone are measured in the communities downwind of these large urban areas. In the Puget Sound region, the hot sunny days favorable for ozone formation also tend to have light north-to-northwest winds. Precursors are transported downwind from their source by the time the highest ozone concentrations have formed in the afternoon and early evening. As shown on Map 3, the highest ozone concentrations occur at the Enumclaw monitor southeast of the urban area.

⁷EPA, Air Quality Index: A Guide to Air Quality and Your Health; epa.gov/airnow/air_quality_index.pdf.
⁸EPA Health and Environmental Effects of Ground Level Ozone; epa.gov/ttn/oarpg/naaqsfin/o3health.html.
⁹EPA Health and Environmental Effects of Ground Level Ozone; epa.gov/ttn/oarpg/naaqsfin/o3health.html.
Map 3: Ozone 3-year Average of 4th Highest 8-hr Value for 2014
Figure 12 presents data for each monitoring station and the 8-hour federal standard. EPA revised its 8-hour standard from 0.08 parts per million (ppm) to 0.075 ppm in March 2008. The federal standard is based on the 3-year average of the 4th highest 8-hour concentration, called the “design value”. The year on the x-axis represents the last year averaged. For example, concentrations shown for 2008 are an average of 2006, 2007 and 2008 4th highest concentrations. The highest 2014 site design value is 0.065 ppm at the Enumclaw site, which does not violate the 2008 standard. The highest 2014 8-hour ozone concentration of 0.086 ppm was recorded at the Enumclaw Mud Mountain monitor.

For 2014, the Puget Sound area is below EPA’s 0.075 ppm 8-hour standard.

Figure 13 presents 8-hour average data for the months of May through September, the months when ozone levels are greatest in the Puget Sound.

Statistical summaries for 8-hour average ozone data are provided on page A-20 of the Appendix.

For additional information on ozone, visit epa.gov/air/ozonepollution.
Figure 12: Ozone for Puget Sound Region

3-Year Average of the 4th Highest Daily Maximum 8-hour Annual Concentration vs Standard

Figure 13: Ozone (O₃) for Puget Sound Region Mar-September 2014
Nitrogen Dioxide

Nitrogen dioxide (NO$_2$) is a reddish brown, highly reactive gas that forms from the reaction of nitrogen oxide (NO) and hydroperoxy (HO$_2$) and alkylperoxy (RO$_2$) free radicals in the atmosphere. NO$_2$ can cause coughing, wheezing and shortness of breath in people with respiratory diseases such as asthma. Long-term exposure can lead to respiratory infections.

The term NO$_x$ is defined as NO + NO$_2$. NO$_x$ participates in a complex chemical cycle with volatile organic compounds (VOCs) which can result in the production of ozone. NO$_x$ can also be oxidized to form nitrates, which are an important component of fine particulate matter. On-road vehicles such as trucks and automobiles and off-road vehicles such as construction equipment, marine vessels and port cargo-handling equipment are the major sources of NO$_x$. Industrial boilers and processes, home heaters and gas stoves also produce NO$_x$.

Motor vehicle and non-road engine manufacturers have been required by EPA to reduce NO$_x$ emissions from cars, trucks and non-road equipment. As a result, emissions have been reduced dramatically since the 1970s.

Ecology maintains a monitoring site for nitrogen dioxide at the Beacon Hill station. In 2007, the monitoring technique and equipment changed to record NO$_y$ instead of NO$_x$, in order to observe all reactive nitrogen compounds. NO$_y$ is NO$_x$ plus all other reactive nitrogen oxides present in the atmosphere. NO$_y$ components such as nitric acid (HNO$_3$) and peroxyacetyl nitrate (PAN) can be important contributors to the formation of ozone and fine particulate matter. The additional nitroxylic compounds are generally present in much lower concentrations than NO$_2$ (or NO$_4$). An additional Seattle site began in June 2014 at 10th & Weller. This site is a “near road” site, located very close to Interstate 5 in the Seattle Chinatown International District.

Figure 14 shows NO$_2$ concentrations through 2005. In 2006, no data were recorded due to the relocation of the Beacon Hill monitor to a different location on the same property. From 2007 onward, the concentration of NO$_2$ is represented as NO$_y$ – NO, since NO$_2$ is no longer directly recorded, and NO$_y$ = NO + NO$_2$ + other nitroxylic compounds. The annual average for each year has consistently been less than half of the federal standard, as shown in Figure 14 and in the statistical summary on page A-21 of the Appendix.

The maximum 1-hour average of NO$_y$ – NO, measured in 2014, was 0.091 ppm on September 14 at the new 10th & Weller site. Visit epa.gov/air/nitrogenoxides/ for additional information on NO$_2$.

EPA promulgated a 1-hour national ambient air quality standard for nitrogen dioxide on January 22, 2010. The new 1-hour standard is 100 ppb. The design value is calculated by following the procedures in the Federal Register. EPA retained the current annual health-based standard for nitrogen dioxide of 53 ppb (0.053 ppm). Nitrogen dioxide levels in the Puget Sound region, as currently monitored by Ecology, are typically below (cleaner than) the levels in the new standard. The new standard is depicted in Figure 15 with historical data since 1998. The years prior to 2010 have been

10 EPA, Airnow, NO$_x$ Chief Causes for Concern; epa.gov/air/nitrogenoxides/
included on the graphs for historical comparison; the new air quality standard applies to 2010 and subsequent years.

Figure 14: Annual Nitrogen Dioxide (NO₂) (1995-2005) and Reactive Nitrogen (NOy – NO) (2007-Present)

Figure 15: 2010 1-Hour Maximum Standard for Nitrogen Dioxide (NO₂) (1995-2005) and Reactive Nitrogen (NOy – NO) (2007-Present)
Carbon Monoxide

Carbon monoxide (CO) is an odorless, colorless gas that can enter the bloodstream through the lungs and reduce the amount of oxygen that reaches organs and tissues. Carbon monoxide forms when the carbon in fuels does not burn completely. The vast majority of CO emissions come from motor vehicles.

Elevated levels of CO in ambient air occur more frequently in areas with heavy traffic and during the colder months of the year when temperature inversions are more common. People with cardiovascular disease or respiratory problems may experience chest pain and increased cardiovascular symptoms, particularly while exercising, if CO levels are high. High levels of CO can affect alertness and vision even in healthy individuals.

Although urban portions of the Puget Sound region historically violated the CO standard, CO levels have decreased significantly primarily due to emissions controls on car engines. EPA designated the Puget Sound region as a CO attainment area in 1996. Ecology has substantially reduced its CO monitoring network, and only the Beacon Hill site was in operation the entire year. A new site located at 10th & Weller began operation in June 2014.

The CO national ambient air quality standard is based on the 2nd highest 8-hour average. Figure 16 shows the 2nd highest 8-hour concentrations and the federal standard (9 ppm) for the Puget Sound region. There currently are no CO monitoring stations in Kitsap, Pierce, or Snohomish Counties.

The maximum 8-hour concentration for CO in 2014 was 2.0 parts per million (ppm) and occurred on November 18 at the new 10th & Weller site.

The EPA federal standards also include a 1-hour standard for CO of 35 ppm, not to be exceeded more than once a year. Measured 1-hour concentrations in the Puget Sound area are historically much lower than the 35 ppm standard.

Statistical summaries for 8-hour average CO data are provided on page A-22 of the Appendix. For additional information on CO, visit epa.gov/airquality/carbonmonoxide.
Figure 16: Carbon Monoxide (CO): 2nd Highest Annual 8-hour Value for Puget Sound Region

![Graph showing 2nd Highest 8-Hour Concentration vs Standard. The graph plots data points over years from 1990 to 2014, showing the concentration of Carbon Monoxide at various locations in the Puget Sound region. The y-axis represents the 2nd Highest 8-Hour Average Concentration in parts per million (ppm), while the x-axis represents the year from 1990 to 2014. The graph includes data for locations such as Northgate (AG), 4th & Pike (AK), 5th & James (AS), 15th & 16th (B1), 140th Ave (DH), 17th & 44th & 199th (JQ), and University (BF).]

Note: 2014 data incomplete for SEA - Beacon Hill and SEA-10th & Weller (less than 75%)
Sulfur Dioxide

Sulfur dioxide (SO\textsubscript{2}) is a colorless, reactive gas produced by burning fuels containing sulfur, such as coal and oil, and by industrial processes. Historically, the greatest sources of SO\textsubscript{2} were industrial facilities that derived their products from raw materials such as metallic ore, coal and crude oil, or that burned coal or oil to produce process heat (petroleum refineries, cement manufacturing and metal processing facilities). Marine vessels, on-road vehicles and diesel construction equipment are the main contributors to SO\textsubscript{2} emissions today.

SO\textsubscript{2} may cause people with asthma who are active outdoors to experience bronchial constriction, where symptoms include wheezing, shortness of breath and tightening of the chest. People should limit outdoor exertion if SO\textsubscript{2} levels are high. SO\textsubscript{2} can also form sulfates in the atmosphere, a component of fine particulate matter.

The Puget Sound area has experienced a significant decrease in SO\textsubscript{2} from sources such as pulp mills, cement plants and smelters in the last two decades. Additionally, levels of sulfur in diesel and gasoline fuels have also decreased.

EPA changed the SO\textsubscript{2} standard in June of 2010 to a more short-term (1-hour) standard and revoked the former annual and daily average standards. Historic comparisons to federal and Washington State standards can be seen in our 2009 data summary which is available upon request.

The 2010 standard is a 3-year average of the 99th percentile of the daily 1-hour maximum concentrations. Levels must be below 0.075 ppm. Sulfur dioxide levels at the Seattle Beacon Hill site are below the 2010 standard.

Figure 17 shows the maximum 3-year average of the 99th percentile of 1-hour maximum concentrations at Beacon Hill. Seattle Beacon Hill did not meet data completeness requirements and it would not be appropriate to compare the available data to the current standard.

Statistical summaries for SO\textsubscript{2} data from the Beacon Hill site are available on page A-23 of the Appendix.

Additional information on SO\textsubscript{2} is available at epa.gov/air/sulfurdioxide/.
Figure 17: Sulfur Dioxide (SO$_2$) 1-Hour Maximum Concentrations (3-Year Average of the 99th Percentile) for the Puget Sound Region

SO$_2$ 3-Year Average of 99th Percentile of 1-Hour Average Daily Maximum

Note: 2011 was the first year that the Design Value has been calculated and compared to the revised primary SO$_2$ standard. 2014 data did not meet the data completeness requirements to calculate an annual 99th percentile value.
Lead

Lead is a highly toxic metal that was used for many years in household products (e.g. paints), automobile fuel and industrial chemicals. Nationally, industrial processes, particularly primary and secondary lead smelters and battery manufacturers, are now responsible for most of the remaining lead emissions. Lead from aviation gasoline used in small aircraft is also of concern nationally.

People, animals and fish are mainly exposed to lead by breathing and ingesting it in food, water, soil or dust. Lead accumulates in the blood, bones, muscles and fat. Infants and young children are especially sensitive to even low levels of lead. Lead can have health effects ranging from behavioral problems and learning disabilities to seizures and death.

According to EPA, the primary sources of lead exposure are lead-based paint, lead-contaminated dust and lead-contaminated residual soils. See the EPA website at epa.gov/ttnatw01/hlthef/lead.html for ways to limit your exposure to these lead sources.

Since the phase-out of lead in fuel and the closure of the Harbor Island secondary lead smelter, levels of lead in ambient air have decreased substantially. For a historic look at the Puget Sound region's lead levels, please see page 87 of the 2007 Air Quality Data Summary which is available upon request.

In October 2008, EPA strengthened the lead standard from 1.5 µg/m³ to 0.15 µg/m³ (rolling three-month average). As part of this rulemaking, EPA initiated a pilot lead monitoring program that focuses on lead from aviation gasoline at small airports, including two in our region. For additional information on lead, visit epa.gov/air/lead.

Washington Department of Ecology conducted monitoring of lead at two airports as part of a national EPA study. Results of the study are available at https://fortress.wa.gov/ecy/publications/SummaryPages/1302040.html

Visibility

Visibility data is presented as an indicator of air quality. Visibility is explained in terms of visual range and light extinction. *Visual range* is the maximum distance, usually miles or kilometers, that you can see a black object against the horizon. *Light extinction* is the sum of light scattering and light absorption by fine particles and gases in the atmosphere. The more light extinction, the shorter the visual range. Visual range as measured by nephelometer instruments using light-scattering methodology provides one approach to measuring visibility at a specific location.

Reduced visibility is caused by weather such as clouds, fog, rain and air pollution, including fine particles and gases. The major contributor to reduced visual range is fine particulate matter (PM$_{2.5}$), which is present near the ground, can be transported aloft and may remain suspended for a week or longer. Figures 18 through 22 show visibility for the overall Puget Sound area, as well as King, Kitsap, Pierce and Snohomish Counties. Visibility on these graphs, in units of miles, is determined by continuous nephelometer monitoring. The nephelometer measures light scattering due to particulate matter (b$_{sp}$), and this value is converted into estimates of visibility in miles. Nephelometer data are shown on page A-17 of the Appendix.

The red line represents the monthly average visibility. The large fluctuations are due to seasonal variability. The blue line shows the average of the previous 12-months. This moving average reduces seasonal variation and allows longer-term trends to be observed. The moving average shows that the visibility for the Puget Sound area has steadily increased (improved) over the last decade with some year-to-year variability. For the 23-year period from December 1990 through December 2014, the 12-month moving average increased from 47 miles to 81 miles.

For additional information on visibility, visit epa.gov/air/visibility/index.html.
Figure 18: Puget Sound Visibility

Figure 19: King County Visibility
Figure 20: Kitsap County Visibility

Figure 21: Pierce County Visibility
Figure 22: Snohomish County Visibility
Air Toxics

“Air toxics” are air pollutants known or suspected to cause health problems. Potential health effects include cancer, birth defects, lung damage, immune system damage, and nerve damage.\(^{13}\) The Agency considers over 400 different air pollutants as air toxics.

This section presents a relative ranking of these toxics based on potential cancer health risks, as well as trends over time. We provide a short description of each air toxic of concern, including their health effects and sources.

The Washington State Department of Ecology (Ecology) monitors for air toxics annually at the Seattle Beacon Hill site. The Beacon Hill site is one of 30 EPA-sponsored National Air Toxic Trends Sites. As in previous years, Ecology monitored toxics every six days. The 2006 dataset is incomplete due to relocation of the Beacon Hill site that year. For general information on air toxics, see pscleanair.org/airquality/airqualitybasics/airtoxics/Pages/default.aspx. Air toxics statistical summaries are provided starting on page A-24 of the Appendix.

Relative ranking based on cancer risk & unit risk factors

Table 3 below ranks 2014 air toxics from the Beacon Hill monitoring site according to mean potential cancer risk per million. It shows monitored pollutants ranked from highest concern (#1) to lowest, based on ambient concentrations multiplied by unit risk factors. A unit risk factor takes into account how toxic a pollutant is. Potential cancer risk estimates are shown here to provide a meaningful basis of comparison between pollutants and are not intended to represent any one community or individual exposure.

Potential cancer risk is an estimate of the number of potential additional cancers (out of a population of one million) that may develop from exposure to air toxics over a lifetime (set at 70 years). A risk level of one in a million is commonly used as a screening value, and is used here.\(^{14}\)

For details on how air toxics were ranked, please see pages A-25 and A-26 in the Appendix.

Risks presented in this table are based on annual average ambient (outside) concentrations. Risks based on 95\(^{th}\) percentile concentrations (a more protective statistic than presented in Table 3) are presented on page A-26 of the Appendix. Page A-26 also lists the frequency (percentage) of samples that were over the cancer screening level of one in a million risk.

\(^{13}\) US EPA, About Air Toxics, Health, and Ecological Effects, \url{http://www.epa.gov/air/toxicair/newtoxics.html}.

\(^{14}\) US EPA, A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Datasets. EPA-904-B-06-001, February 2006; epa.gov/region4/air/airtoxic/Screening_111610_KMEL.pdf
Table 3: 2014 Beacon Hill Air Toxics Ranking
(Average Potential Cancer Risk Estimate per 1,000,000)

<table>
<thead>
<tr>
<th>Air Toxic</th>
<th>Rank</th>
<th>Average Potential Cancer Risk(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Tetrachloride</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Benzene</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Cadmium (PM(_{10}))</td>
<td>4</td>
<td>5(^b)</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Chloroform</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Hexavalent Chromium</td>
<td>6</td>
<td>3(^c)</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Arsenic (PM(_{10}))</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ethylene Dichloride</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Nickel (PM(_{10}))</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Risk based on unit risk factors as adopted in Washington State Acceptable Source Impact Level (WAC 173-460-150)

\(^b\) For cadmium, an outlier sampled on 9/8/14 was included in this estimate. On that day, no other metal concentrations were statistical outliers compared to their annual variability. With the outlier excluded, the estimated annual potential cancer risk for cadmium would be < 1.

\(^c\) Sampling for hexavalent chromium was discontinued in 2013 and the included estimate is based on 2013.

PM\(_{10}\) = fine particles less than 10 micrometers in diameter
TSP = total suspended particulate

The two air toxics that present the majority of potential health risk in the Puget Sound area, diesel particulate matter and wood smoke particulate, are not included in the table. No direct monitoring method currently exists for these toxics. Modeling for these air toxics was not conducted for this report.

Health effects other than cancer

Air toxics can also have chronic non-cancer health effects. These include respiratory, cardiac, immunological, nervous system and reproductive system effects.

In order to determine non-cancer health risks, we compared each air toxic to its reference concentration, as established by California EPA (the most comprehensive dataset available). A reference concentration (RfC) is considered a safe level for toxics for non-cancer health effects.

Only one air toxic, acrolein, failed the screen for non-cancer health effects, with measured concentrations consistently exceeding the reference concentration. Acrolein irritates the lungs, eyes, and nose, and is a combustion by-product.\(^\text{16}\) Unfortunately, acrolein measurements have large uncertainty and is one of the most difficult pollutants to measure.\(^\text{17}\) Therefore, for acrolein, we did not explore a trend analysis as the results are likely all within the uncertainty of the measurement.

Reference concentrations and hazard indices are shown for each air toxic on page A-27 of the Appendix. A hazard index is the concentration of a pollutant (either mean or other statistic) divided by the reference concentration. Typically, no adverse non-cancer health effects for that pollutant are associated with a hazard index less than 1, although it is important to consider that people are exposed to many pollutants at the same time.

We did not explore acute non-cancer health effects, because the Beacon Hill air toxics concentrations are based on 24-hour samples.

Air toxics trends

Annual average potential cancer risks are shown on the following pages for air toxics collected from 2000 to 2014 at Beacon Hill. For many air toxics, our analysis of the trends shows a statistically significant decrease in annual average concentrations.

EPA has not set ambient air standards for air toxics, so graphs do not include reference lines for federal standards. The statistical results can be found on page A-28 of the Appendix.

\(^\text{16}\)EPA, Acrolein Hazard Summary; epa.gov/tnn/atw/hlthef/acrolein.html.
Carbon Tetrachloride

The EPA lists carbon tetrachloride as a probable human carcinogen. Carbon tetrachloride inhalation is also associated with liver and kidney damage.18 It was widely used as a solvent for both industry and consumer users and was banned from consumer use in 1995. Trace amounts are still emitted by local sewage treatment plants. Carbon tetrachloride is relatively ubiquitous and has a long half-life and concentrations are similar in urban and rural areas. Carbon tetrachloride’s 2014 average potential cancer risk estimate at Beacon Hill was 28 in a million.

The Agency does not target efforts at reducing carbon tetrachloride emissions, as carbon tetrachloride has already been banned. We did not find a statistically significant trend in carbon tetrachloride levels over time.

Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

18EPA Hazard Summary; epa.gov/ttn/atw/hlthef/carbonte.html.
Benzene

The EPA lists benzene as a known human carcinogen. Benzene inhalation is also linked with blood, immune and nervous system disorders. This air toxic comes from a variety of sources, including car/truck exhaust, wood burning, evaporation of industrial solvent and other combustion. Benzene’s 2014 average potential cancer risk range estimate at Beacon Hill was 15 in a million.

Benzene levels are likely decreasing in our area due to factors including: less automobile pollution with cleaner vehicles coming into the fleet, better fuels and fewer gas station emissions due to better compliance (vapor recovery at the pump and during filling of gas station tanks). We found a statistically significant drop in risk from benzene at a rate of about two per million per year since 2000.

Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

19EPA Hazard Summary; epa.gov/ttn/atw/hlthef/benzene.html.
1,3-Butadiene

The EPA lists 1,3-butadiene as a known human carcinogen. 1,3-butadiene inhalation is also associated with neurological effects. Primary sources of 1,3-butadiene include cars, trucks, buses and wood burning. 1,3-butadiene’s 2014 average potential cancer risk estimate at Beacon Hill was 12 in a million.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce 1,3-butadiene emissions. Since 2000, we found a statistically significant drop in risk from 1,3-butadiene at a rate of about one per million per year.

Figure 25: 1,3-butadiene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

20EPA Hazard Summary; epa.gov/ttnatw01/hlthef/butadien.html.
Cadmium

EPA lists cadmium as a probable human carcinogen. Cadmium exposures are also associated with kidney damage. Combustion of distillate oil is a main source of cadmium in the Puget Sound area.

Cadmium’s 2014 average potential cancer risk estimate at Beacon Hill was 5 in a million. A sampled outlier on 9/8/14 was included in this estimate. On that day, no other metal concentrations were statistical outliers compared to their respective annual variability. With the outlier excluded, the estimated annual potential cancer risk for cadmium would be < 1. A similar outlier in 2013 (on 11/18/13) resulted in a higher annual risk estimate that would have been < 1.

With or without the outlier included, we found no statistically significant trend for cadmium. Over half the samples in 2010 were below the detection limits and did not have sufficient data to make a comparable average.

The Agency’s permitting program works with and regulates industrial producers of cadmium to reduce emissions.

Figure 26: Cadmium Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014

21EPA Hazard Summary; epa.gov/ttn/atw/hlthef/cadmium.html.
Formaldehyde

The EPA lists formaldehyde as a probable human carcinogen. Formaldehyde inhalation is also associated with eye, nose, throat and lung irritation. Sources of ambient formaldehyde include automobiles, trucks, wood burning and other combustion. Formaldehyde’s 2014 average potential cancer risk range estimate at Beacon Hill was 4 in a million.

The increase in formaldehyde 2003 concentrations is due to 9 anomalous sampling days in July 2003 when levels were roughly ten times the normal levels. It is possible that a local formaldehyde source was present at the Beacon Hill reservoir during this month and inadvertently affected the monitors.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce formaldehyde emissions. Since 2000, we found a statistically significant drop in risk from formaldehyde at a rate of about one per million per year.

Figure 27: Formaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

22EPA Hazard Summary; epa.gov/ttn/atw/hltinf/formalde.html.
Chloroform

The EPA lists chloroform as a probable human carcinogen. Chloroform inhalation is associated with central nervous system effects and liver damage. Main sources of chloroform are water treatment plants and reservoirs. Since the Beacon Hill monitoring site is located at the Beacon Hill reservoir, the chloroform data may be biased high. However, it is still useful to calculate and assess the long-term trend and potential risk. Chloroform’s 2014 average potential cancer risk range estimate at Beacon Hill was 3 in a million.

The Agency does not prioritize efforts to reduce chloroform emissions, as it does not likely present risk in areas other than those directly adjacent to reservoirs. Since 2000, we found a statistically significant drop in risk from chloroform at a rate of about 0.3 per million per year.

Figure 28: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

23 EPA Hazard Summary; epa.gov/ttn/atw/hlthef/chlorofo.html.
Hexavalent Chromium

Chromium is present in two chemical states (trivalent and hexavalent) in our air. Trivalent chromium occurs naturally, while hexavalent comes from human activities and is much more toxic. EPA lists hexavalent chromium as a known carcinogen, associated primarily with lung cancer. Hexavalent chromium is often abbreviated as chromium +6 or chromium VI.

Exposure to hexavalent chromium is also associated with adverse respiratory, liver, and kidney effects. Sources of hexavalent chromium include chrome electroplaters, as well as combustion of distillate oil, and combustion of gasoline and diesel fuels (car, truck and bus exhaust).

Due to the significant cost of monitoring for this pollutant, monitoring for total suspended particulate (TSP) hexavalent chromium was stopped in 2013. The 2013 estimated average potential cancer risk range for hexavalent chromium at Beacon Hill was 3 in a million. Sampling has been discontinued for hexavalent chromium and the last sample was collected on June 30th, 2013. This estimate only includes the first half of 2013.

In some years, up to 20% of the samples were below method detection limits. For the trend below, we used the Kaplan-Meier method to estimate the mean to better account for potential left-sensored data biases for each year and changes in detection limits. Since 2000, we found a statistically significant drop in risk from hexavalent chromium at a rate of about 0.4 per million per year. The Agency’s permitting program works with and regulates industrial chromium plating operations to reduce hexavalent chromium emissions.

Figure 29: Hexavalent Annual Average Potential Cancer Risk at Beacon Hill, 2005-2013

25EPA Hazard Summary; epa.gov/ttn/atw/hltbef/chromium.html.
Acetaldehyde

The EPA lists acetaldehyde as a probable human carcinogen. Acetaldehyde inhalation is also associated with irritation of eyes, throat and lungs, and effects similar to alcoholism. Main sources of acetaldehyde include wood burning and car/truck exhaust. Acetaldehyde’s 2014 average potential cancer risk estimate at Beacon Hill was 2 in a million.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce acetaldehyde emissions. Since 2000, we found a statistically significant drop in risk from acetaldehyde at a rate of about 0.2 per million per year.

Figure 30: Acetaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

26EPA Hazard Summary; epa.gov/ttn/atw/hlthef/acetalde.html.
ArSENiC

EPA lists arsenic as a known carcinogen. Exposure to arsenic is also associated with skin irritation and liver and kidney damage.\(^\text{27}\) Arsenic is used to treat wood. Combustion of distillate oil is also a source of arsenic in the Puget Sound area. Arsenic’s 2014 average potential cancer risk range estimate at Beacon Hill was 2 in a million. We found a statistically significant decline in arsenic levels at a rate of 0.1 per million per year.

We enforce illegal burning practices to limit arsenic emissions in Puget Sound. The Agency’s permitting program also works with and regulates industrial producers of arsenic to reduce emissions.

Figure 31: Arsenic Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014

\(^{27}\)EPA Hazard Summary; epa.gov/ttn/atw/hlthef/arsenic.html.
Ethylene Dichloride

EPA lists ethylene dichloride as a probable human carcinogen. It is primarily used as a solvent in the production of other chemicals like vinyl chloride. It is also added to leaded gas. 28

We estimated ethylene dichloride’s 2014 average potential cancer risk estimate at Beacon Hill at 2 in a million.

There is no useful trend information for this air toxic since this estimate includes samples near the practical quantitation limit of the measurement method. That is, all of the samples in 2014 were within twice the method detection limit. Additionally, in prior years, most of the samples were below the method detection limits. Through the years, the detection limits for this air toxic is near the one in a million potential cancer risk level.

The Agency’s permitting program works with and regulates industrial producers of ethylene dichloride to reduce emissions.

Naphthalene

EPA lists naphthalene as a possible human carcinogen. Naphthalene is similarly associated with respiratory effects and retina damage. Local sources of naphthalene include combustion of wood and heavy fuels. Naphthalene’s 2014 average potential cancer risk estimate at Beacon Hill was at two in a million.

The Agency works with and regulates wood burning through burn bans and wood stove replacement programs to reduce naphthalene emissions. We did not find a statistically significant trend in naphthalene levels over time. Monitoring for naphthalene and other polycyclic aromatic hydrocarbons started in 2008.

Figure 32: Naphthalene Annual Average Potential Cancer Risk at Beacon Hill, 2008-2014

29 EPA Hazard Summary; epa.gov/ttn/atw/hltdef/naphthal.html.
Dichloromethane

EPA lists dichloromethane as a probable human carcinogen. Dichloromethane is also known as methylene chloride. Dichloromethane is a common solvent used for paint, extraction, and cleaning processes.\(^{30}\) Dichloromethane’s 2014 average potential cancer risk estimate at Beacon Hill was 2 in a million. We did not find a statistically significant trend in dichloromethane levels over this time frame.

The Agency’s permitting program works with and regulates industrial producers of dichloromethane to reduce emissions.

Figure 33: Dichloromethane Annual Average Potential Cancer Risk at Beacon Hill, 2007-2014

\(^{30}\) EPA Hazard Summary, http://www.epa.gov/ttnatw01/hlthef/methylen.html.
Ethylbenzene

EPA lists ethylbenzene as a Group D pollutant, which is not classifiable as to human carcinogenicity due to limited information available.31 Chronic exposure to ethylbenzene may affect the blood, liver, and kidneys. Local sources of ethylbenzene are from fuels, asphalt and naphtha. It is also used in styrene production. Ethylbenzene’s 2014 average potential cancer risk estimate at Beacon Hill was below one in a million, however is above one in the 95th percentile table in the appendix. We did not find a statistically significant trend in ethylbenzene levels over this time frame. The Agency works with and regulates solvent-using businesses to reduce ethylbenzene emissions.

Figure 34: Ethylbenzene Annual Average Potential Cancer Risk at Beacon Hill, 2007-2014

31EPA Hazard Summary: epa.gov/ttn/atw/hlthef/ethylben.html.
Nickel

EPA lists nickel as a known human carcinogen. Nickel is also associated with dermatitis and respiratory effects. Combustion of gasoline and diesel fuels (car, truck and bus exhaust) is a main source of nickel in the Puget Sound area. Nickel’s 2014 average potential cancer risk estimate at Beacon Hill was one in a million. We did not find a statistically significant trend in nickel levels over this time frame. Agency efforts that target reducing vehicle exhaust also reduce nickel emissions.

Figure 35: Nickel Annual Average Potential Cancer Risk at Beacon Hill, 2003-2014

32 EPA Hazard Summary; epa.gov/iris/subst/0273.htm
Tetrachloroethylene

EPA lists tetrachloroethylene, also known as perchloroethylene or “perc”, as a probable human carcinogen. Tetrachloroethylene inhalation is also associated with central nervous system effects, liver and kidney damage, and cardiac arrhythmia.\(^{33}\) Dry cleaners are the main source of tetrachloroethylene. Tetrachloroethylene’s 2014 average potential cancer risk estimate at Beacon Hill was below one in a million, however is near one in the 95\(^{th}\) percentile table in the appendix.

Recently, we’ve been working with dry cleaners to monitor for and repair leaks in their equipment to reduce the release of tetrachloroethylene. Since 2000, we found a statistically significant drop in risk from tetrachloroethylene at a rate of about 0.1 per million per year.

Figure 36: Tetrachloroethylene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2014

\(^{33}\)EPA Hazard Summary; epa.gov/ttn/atw/hlthef/tet-ethy.html.
Definitions

General Definitions

Air Quality Index

Table 4: 2014 Calculation and Breakpoints for the Air Quality Index (AQI)

<table>
<thead>
<tr>
<th>Breakpoints for Criteria Pollutants</th>
<th>AQI Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000–0.059 0.060–0.075 0.076–0.095 0.096–0.115 0.116–0.374 0.405–0.504 0.505–0.604</td>
<td>0.000–0.059</td>
</tr>
<tr>
<td>0.05–12.0 0.06–3.5 0.12–5.3 0.20–5.1 0.40–5.0 0.50–0.60</td>
<td>0.06–0.075</td>
</tr>
<tr>
<td>12.1–35.4 55–154 9.5–12.4 76–185 101–360 101–150</td>
<td>0.076–0.095</td>
</tr>
<tr>
<td>0.125–0.164 35.5–55.4 155–254 9.5–12.4 76–185 101–360 101–150</td>
<td>0.096–0.115</td>
</tr>
<tr>
<td>0.165–0.204 55.5–150.4 255–354 12.5–15.4 186–304 361–649 151–200</td>
<td>0.116–0.374</td>
</tr>
<tr>
<td>0.205–0.404 150.5–250.4 355–424 15.5–30.4 305–604 (24 hr) 650–1249 201–300</td>
<td>(b) 0.0405–0.504</td>
</tr>
<tr>
<td>250.5–350.4 425–504 30.5–40.4 604–804 (24 hr) 1250–1649 301–400</td>
<td>(b) 0.0505–0.604</td>
</tr>
<tr>
<td>350.5–500.4 505–604 40.5–50.4 805–1004 (24 hr) 1650–2049 401–500</td>
<td></td>
</tr>
</tbody>
</table>

Note: Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be safer. In these cases, in addition to calculating the 8-hour ozone value, the 1-hour ozone value may be calculated, and the greater of the two values reported.

Note: 8-hour O₃ values do not define higher AQI values (above 300). AQI values above 300 are calculated with 1-hour O₃ concentrations.

Note: EPA changed the SO₂ standard on June 22, 2010 to be based on an hourly maximum instead of a 24-hour and annual average.

For more information on the AQI, see airnow.gov/index.cfm?action=aqibasics.aqi.

Air shed

A geographic area that shares the same air, due to topography, meteorology and climate.

Air Toxics

Air toxics are broadly defined as over 400 pollutants that the Agency considers potentially harmful to human health and the environment. These pollutants are listed in the Washington Administrative Code at apps.leg.wa.gov/WAC/default.aspx?cite=173-460-150. Hazardous air pollutants (see below) are checked on this list to identify them as a subset of air toxics. Air toxics are also called Toxic Air Contaminants (TAC) under Agency Regulation III.

Criteria Air Pollutant (CAP)

The Clean Air Act of 1970 defined *criteria pollutants* and provided EPA the authority to establish ambient concentration standards for these criteria pollutants to protect public health. EPA periodically revises the original concentration limits and methods of measurement, most recently in 2011. The six criteria air pollutants are: particulate matter (10 micrometers and 2.5
micrometers), ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide and lead. See appendix page A-29 for more information.

ppm, ppb (parts per million, or parts per billion))
A unit of concentration used for many air pollutants. A ppm (ppb) means one molecule of the pollutant per million (or billion) molecules of air.

Hazardous Air Pollutant (HAP)
A hazardous air pollutant is an air contaminant listed in the Federal Clean Air Act, Section 112(b). EPA currently lists 188 pollutants as HAPs at epa.gov/ttn/atw/188polls.html.

Temperature Inversions
Air temperature usually decreases with altitude. On a sunny day, air near the surface is warmed and is free to rise. The warm surface air can rise to altitudes of 4000 feet or more and is dispersed (or mixed) into higher altitudes. In contrast, on clear nights with little wind, the surface can cool rapidly (by 10 degrees or more), which also cools the air just above the surface. The air aloft does not cool, which creates a very stable situation where the warm air aloft effectively caps the cooler air below. This limits mixing to just a few hundred feet or less. This situation is called a temperature inversion and allows for pollutants to accumulate to high concentrations.

Unit Risk Factor (URF)
A unit risk factor is a measure of a pollutant’s cancer risk based on a 70-year inhalation exposure period. The units are risk/concentration. Unit risk factors are multiplied by concentrations to estimate potential cancer risk.

Visibility/Regional Haze
Visibility is often explained in terms of visual range and light extinction. Visual range is the maximum distance (usually miles or kilometers) a black object can be seen against the horizon. Light extinction is the sum of light scattering and light absorption by fine particles and gases in the atmosphere. The more light extinction, the shorter the visual range. Reduced visibility (or visual range) is caused by weather (clouds, fog, and rain) and air pollution (fine particles and gases).

Volatile Organic Compound (VOC)
An organic compound that participates in atmospheric photochemical reactions. This excludes compounds determined by EPA to have negligible photochemical reactivity.
2014 Air Quality Data Summary Appendix

July 2014

Working Together for Clean Air
Air Quality Index
1980 – 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>PM</th>
<th>CO</th>
<th>SO2</th>
<th>O3</th>
<th>NO2</th>
<th>PM</th>
<th>CO</th>
<th>SO2</th>
<th>O3</th>
<th>NO2</th>
<th>AQI</th>
<th>Date</th>
<th>Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>73</td>
<td>275</td>
<td>18</td>
<td>0</td>
<td>95</td>
<td>270</td>
<td>1</td>
<td>17</td>
<td>194</td>
<td>Jan 23</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>69</td>
<td>267</td>
<td>28</td>
<td>1</td>
<td>109</td>
<td>254</td>
<td>2</td>
<td>5</td>
<td>24</td>
<td>Jan 15</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>86</td>
<td>268</td>
<td>10</td>
<td>1</td>
<td>96</td>
<td>264</td>
<td>5</td>
<td>10</td>
<td>24</td>
<td>Feb 6</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>98</td>
<td>258</td>
<td>9</td>
<td>0</td>
<td>101</td>
<td>261</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>Jan 28</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>146</td>
<td>218</td>
<td>2</td>
<td>0</td>
<td>111</td>
<td>242</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>Dec 6</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>150</td>
<td>202</td>
<td>10</td>
<td>3</td>
<td>156</td>
<td>206</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>Dec 12</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>130</td>
<td>226</td>
<td>8</td>
<td>1</td>
<td>113</td>
<td>246</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>Jan 7</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>120</td>
<td>238</td>
<td>7</td>
<td>0</td>
<td>119</td>
<td>246</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>Feb 6</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>215</td>
<td>146</td>
<td>5</td>
<td>0</td>
<td>77</td>
<td>298</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Dec 3</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>231</td>
<td>134</td>
<td>0</td>
<td>0</td>
<td>129</td>
<td>233</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Jan 19</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>216</td>
<td>145</td>
<td>4</td>
<td>0</td>
<td>139</td>
<td>201</td>
<td>6</td>
<td>19</td>
<td>0</td>
<td>Aug 11</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>229</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>140</td>
<td>190</td>
<td>8</td>
<td>27</td>
<td>0</td>
<td>Dec 15</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>206</td>
<td>159</td>
<td>1</td>
<td>0</td>
<td>103</td>
<td>230</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>Feb 3</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>240</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>118</td>
<td>235</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>Jan 11</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>293</td>
<td>70</td>
<td>2</td>
<td>0</td>
<td>72</td>
<td>270</td>
<td>1</td>
<td>22</td>
<td>0</td>
<td>Jul 21</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>299</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>249</td>
<td>5</td>
<td>16</td>
<td>0</td>
<td>Jan 3</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>297</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>85</td>
<td>252</td>
<td>2</td>
<td>27</td>
<td>0</td>
<td>Oct 9</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>302</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>117</td>
<td>230</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>Jan 16</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>317</td>
<td>46</td>
<td>2</td>
<td>0</td>
<td>111</td>
<td>228</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>Jul 27</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>267</td>
<td>92</td>
<td>6</td>
<td>0</td>
<td>251</td>
<td>60</td>
<td>0</td>
<td>54</td>
<td>5</td>
<td>Jan 4</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>251</td>
<td>98</td>
<td>6</td>
<td>0</td>
<td>288</td>
<td>25</td>
<td>0</td>
<td>53</td>
<td>5</td>
<td>Nov 21</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>273</td>
<td>86</td>
<td>6</td>
<td>0</td>
<td>295</td>
<td>10</td>
<td>0</td>
<td>60</td>
<td>6</td>
<td>Nov 10</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>260</td>
<td>90</td>
<td>4</td>
<td>0</td>
<td>275</td>
<td>11</td>
<td>0</td>
<td>79</td>
<td>4</td>
<td>Nov 27</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>268</td>
<td>95</td>
<td>2</td>
<td>0</td>
<td>250</td>
<td>5</td>
<td>0</td>
<td>110</td>
<td>2</td>
<td>Jun 6</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>256</td>
<td>105</td>
<td>5</td>
<td>0</td>
<td>280</td>
<td>2</td>
<td>0</td>
<td>84</td>
<td>4</td>
<td>Dec 18</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>254</td>
<td>106</td>
<td>5</td>
<td>0</td>
<td>302</td>
<td>3</td>
<td>0</td>
<td>60</td>
<td>5</td>
<td>Dec 11</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>268</td>
<td>87</td>
<td>6</td>
<td>4</td>
<td>273</td>
<td>2</td>
<td>0</td>
<td>90</td>
<td>6</td>
<td>Jul 22</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>285</td>
<td>77</td>
<td>3</td>
<td>0</td>
<td>278</td>
<td>0</td>
<td>87</td>
<td>2</td>
<td>0</td>
<td>Jan 29</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>287</td>
<td>76</td>
<td>3</td>
<td>0</td>
<td>306</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>3</td>
<td>Jun 29</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>272</td>
<td>88</td>
<td>4</td>
<td>1</td>
<td>254</td>
<td>0</td>
<td>111</td>
<td>1</td>
<td>4</td>
<td>Jul 5</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>320</td>
<td>44</td>
<td>1</td>
<td>0</td>
<td>261</td>
<td>0</td>
<td>104</td>
<td>0</td>
<td>1</td>
<td>Aug 17</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>316</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>192</td>
<td>0</td>
<td>173</td>
<td>0</td>
<td>0</td>
<td>Dec 10</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>315</td>
<td>47</td>
<td>4</td>
<td>0</td>
<td>206</td>
<td>0</td>
<td>160</td>
<td>2</td>
<td>0</td>
<td>Aug 5</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>221</td>
<td>139</td>
<td>4</td>
<td>1</td>
<td>308</td>
<td>0</td>
<td>53</td>
<td>4</td>
<td>0</td>
<td>Nov 28</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>264</td>
<td>99</td>
<td>2</td>
<td>0</td>
<td>187</td>
<td>0</td>
<td>101</td>
<td>77</td>
<td>0</td>
<td>Jul 12</td>
<td>O3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 4518 62 112 6 6282 4723 61 1637 81 67 83 30 0

PM = Particulate Matter **CO** = Carbon Monoxide **SO2** = Sulfur Dioxide **O3** = Ozone **NO2** = Nitrogen Dioxide

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM10). In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM2.5) and 8-hour ozone (O3) standards. The O3 standard was again revised in March 2008. NO2 data added beginning 2013.
Air Quality for King County

Days of the Year

Year

7 6 4 2 5 5 6 3 3 4 1 0 4 4 2
Air Quality Index
1990 – 2014

Kitsap County

<table>
<thead>
<tr>
<th>Year</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for Sensitive Groups</th>
<th>Very Unhealthy</th>
<th>Unhealthy Days</th>
<th>Air Quality Index (AQI)</th>
<th>Date</th>
<th>Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for Sensitive Groups</th>
<th>Very Unhealthy</th>
<th>Unhealthy Days</th>
<th>Air Quality Index (AQI)</th>
<th>Date</th>
<th>Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>353</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>361</td>
<td>0</td>
<td>68</td>
<td>Nov 25</td>
</tr>
<tr>
<td>1993</td>
<td>343</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>355</td>
<td>0</td>
<td>62</td>
<td>Jan 11</td>
</tr>
<tr>
<td>1994</td>
<td>364</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>248 117</td>
<td>0</td>
<td>54</td>
<td>Dec 23</td>
</tr>
<tr>
<td>1995</td>
<td>361</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>86 279</td>
<td>0</td>
<td>57</td>
<td>Jan 5</td>
</tr>
<tr>
<td>1996</td>
<td>361</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>206 156</td>
<td>0</td>
<td>51</td>
<td>Mar 2</td>
</tr>
<tr>
<td>1997</td>
<td>361</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>362</td>
<td>0</td>
<td>55</td>
<td>Jan 15</td>
</tr>
<tr>
<td>1998</td>
<td>347</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>356</td>
<td>0</td>
<td>87</td>
<td>Nov 8</td>
</tr>
<tr>
<td>1999</td>
<td>333</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>81</td>
<td>Jan 5 #</td>
</tr>
<tr>
<td>2000</td>
<td>290</td>
<td>75</td>
<td>0</td>
<td>1</td>
<td>366</td>
<td>1</td>
<td>159</td>
<td>Jul 4</td>
</tr>
<tr>
<td>2001</td>
<td>320</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>362</td>
<td>0</td>
<td>91</td>
<td>Dec 25</td>
</tr>
<tr>
<td>2002</td>
<td>324</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>78</td>
<td>Nov 2</td>
</tr>
<tr>
<td>2003</td>
<td>318</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>78</td>
<td>Nov 3</td>
</tr>
<tr>
<td>2004</td>
<td>340</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>366</td>
<td>0</td>
<td>80</td>
<td>Jul 4</td>
</tr>
<tr>
<td>2005</td>
<td>328</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>365</td>
<td>2</td>
<td>136</td>
<td>Jul 4</td>
</tr>
<tr>
<td>2006</td>
<td>339</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>365</td>
<td>1</td>
<td>105</td>
<td>Dec 17</td>
</tr>
<tr>
<td>2007</td>
<td>322</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>364</td>
<td>0</td>
<td>92</td>
<td>Nov 24</td>
</tr>
<tr>
<td>2008</td>
<td>342</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>366</td>
<td>0</td>
<td>78</td>
<td>Dec 23</td>
</tr>
<tr>
<td>2009</td>
<td>300</td>
<td>37</td>
<td>2</td>
<td>0</td>
<td>339</td>
<td>2</td>
<td>111</td>
<td>Dec 3</td>
</tr>
<tr>
<td>2010</td>
<td>321</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>352</td>
<td>0</td>
<td>88</td>
<td>Dec 31</td>
</tr>
<tr>
<td>2011</td>
<td>340</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>363</td>
<td>1</td>
<td>111</td>
<td>Jan 1</td>
</tr>
<tr>
<td>2012</td>
<td>345</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>356</td>
<td>0</td>
<td>68</td>
<td>Jan 1</td>
</tr>
<tr>
<td>2013</td>
<td>352</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>75</td>
<td>Jul 4</td>
</tr>
<tr>
<td>2014</td>
<td>354</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>70</td>
<td>Jul 4</td>
</tr>
</tbody>
</table>

Totals: 7758 | 550 | 6 | 1 | 0 | 7763 | 552 | 0 | 0 | 7 | 0 | 0

PM = Particulate Matter
CO = Carbon Monoxide
SO₂ = Sulfur Dioxide
O₃ = Ozone
= 1st Occurrence

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀).
In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM₂.₅) and 8-hour ozone (O₃) standards. The O₃ standard was again revised in March 2008.
Air Quality for Kitsap County

The graph shows the number of days with poor air quality in Kitsap County from 2000 to 2014. The data is categorized into three quality levels: Moderate, Unhealthy for Sensitive Groups, and Unhealthy. The graph indicates a decrease in the number of days with poor air quality over the years.
Air Quality Index
1980 – 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>PM</th>
<th>CO</th>
<th>SO2</th>
<th>PM</th>
<th>CO</th>
<th>O3</th>
<th>AQI</th>
<th>Date</th>
<th>Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>83</td>
<td>271</td>
<td>12</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>8</td>
<td>160</td>
<td>Apr 12</td>
</tr>
<tr>
<td>1981</td>
<td>74</td>
<td>278</td>
<td>10</td>
<td>3</td>
<td>222</td>
<td>127</td>
<td>6</td>
<td>227</td>
<td>Jan 12</td>
</tr>
<tr>
<td>1982</td>
<td>119</td>
<td>242</td>
<td>4</td>
<td>0</td>
<td>255</td>
<td>101</td>
<td>9</td>
<td>167</td>
<td>Dec 30</td>
</tr>
<tr>
<td>1983</td>
<td>140</td>
<td>222</td>
<td>3</td>
<td>0</td>
<td>228</td>
<td>128</td>
<td>9</td>
<td>137</td>
<td>Dec 23</td>
</tr>
<tr>
<td>1984</td>
<td>162</td>
<td>198</td>
<td>6</td>
<td>0</td>
<td>207</td>
<td>149</td>
<td>10</td>
<td>117</td>
<td>Jan 19</td>
</tr>
<tr>
<td>1985</td>
<td>140</td>
<td>213</td>
<td>12</td>
<td>0</td>
<td>252</td>
<td>109</td>
<td>4</td>
<td>165</td>
<td>Dec 13</td>
</tr>
<tr>
<td>1986</td>
<td>161</td>
<td>197</td>
<td>7</td>
<td>0</td>
<td>247</td>
<td>114</td>
<td>4</td>
<td>167</td>
<td>Oct 23</td>
</tr>
<tr>
<td>1987</td>
<td>173</td>
<td>177</td>
<td>13</td>
<td>2</td>
<td>227</td>
<td>136</td>
<td>2</td>
<td>220</td>
<td>Feb 5</td>
</tr>
<tr>
<td>1988</td>
<td>226</td>
<td>132</td>
<td>8</td>
<td>0</td>
<td>184</td>
<td>175</td>
<td>7</td>
<td>183</td>
<td>Jan 27</td>
</tr>
<tr>
<td>1989</td>
<td>260</td>
<td>103</td>
<td>2</td>
<td>0</td>
<td>217</td>
<td>121</td>
<td>27</td>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>1990</td>
<td>271</td>
<td>91</td>
<td>3</td>
<td>0</td>
<td>219</td>
<td>87</td>
<td>41</td>
<td>18</td>
<td>118</td>
</tr>
<tr>
<td>1991</td>
<td>261</td>
<td>103</td>
<td>1</td>
<td>0</td>
<td>247</td>
<td>85</td>
<td>12</td>
<td>21</td>
<td>117</td>
</tr>
<tr>
<td>1992</td>
<td>260</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>231</td>
<td>83</td>
<td>27</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>1993</td>
<td>289</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>247</td>
<td>82</td>
<td>23</td>
<td>13</td>
<td>89</td>
</tr>
<tr>
<td>1994</td>
<td>313</td>
<td>51</td>
<td>1</td>
<td>0</td>
<td>235</td>
<td>75</td>
<td>31</td>
<td>24</td>
<td>105</td>
</tr>
<tr>
<td>1995</td>
<td>307</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>239</td>
<td>97</td>
<td>13</td>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>1996</td>
<td>322</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>206</td>
<td>119</td>
<td>23</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td>1997</td>
<td>316</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>262</td>
<td>75</td>
<td>16</td>
<td>12</td>
<td>84</td>
</tr>
<tr>
<td>1998</td>
<td>338</td>
<td>25</td>
<td>2</td>
<td>0</td>
<td>213</td>
<td>112</td>
<td>25</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>1999</td>
<td>265</td>
<td>97</td>
<td>3</td>
<td>0</td>
<td>318</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>139</td>
</tr>
<tr>
<td>2000</td>
<td>242</td>
<td>110</td>
<td>13</td>
<td>1</td>
<td>318</td>
<td>2</td>
<td>46</td>
<td>14</td>
<td>153</td>
</tr>
<tr>
<td>2001</td>
<td>271</td>
<td>83</td>
<td>11</td>
<td>0</td>
<td>306</td>
<td>2</td>
<td>57</td>
<td>11</td>
<td>139</td>
</tr>
<tr>
<td>2002</td>
<td>267</td>
<td>88</td>
<td>9</td>
<td>1</td>
<td>291</td>
<td>1</td>
<td>73</td>
<td>10</td>
<td>158</td>
</tr>
<tr>
<td>2003</td>
<td>265</td>
<td>92</td>
<td>8</td>
<td>0</td>
<td>264</td>
<td>1</td>
<td>100</td>
<td>8</td>
<td>122</td>
</tr>
<tr>
<td>2004</td>
<td>251</td>
<td>110</td>
<td>5</td>
<td>0</td>
<td>272</td>
<td>0</td>
<td>94</td>
<td>5</td>
<td>133</td>
</tr>
<tr>
<td>2005</td>
<td>275</td>
<td>82</td>
<td>8</td>
<td>0</td>
<td>276</td>
<td>2</td>
<td>87</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>2006</td>
<td>273</td>
<td>71</td>
<td>7</td>
<td>4</td>
<td>270</td>
<td>0</td>
<td>95</td>
<td>8</td>
<td>170</td>
</tr>
<tr>
<td>2007</td>
<td>298</td>
<td>57</td>
<td>10</td>
<td>0</td>
<td>261</td>
<td>104</td>
<td>9</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td>2008</td>
<td>295</td>
<td>63</td>
<td>8</td>
<td>0</td>
<td>259</td>
<td>107</td>
<td>5</td>
<td>3</td>
<td>129</td>
</tr>
<tr>
<td>2009</td>
<td>284</td>
<td>66</td>
<td>14</td>
<td>1</td>
<td>250</td>
<td>115</td>
<td>15</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>2010</td>
<td>324</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>259</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>2011</td>
<td>307</td>
<td>47</td>
<td>10</td>
<td>1</td>
<td>365</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>2012</td>
<td>322</td>
<td>39</td>
<td>5</td>
<td>0</td>
<td>366</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>2013</td>
<td>286</td>
<td>72</td>
<td>7</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>2014</td>
<td>306</td>
<td>57</td>
<td>2</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>114</td>
</tr>
</tbody>
</table>

Totals: 8756 3811 120 92 5 9199 2101 293 1191 139 66 12

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM_{10}).
In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM_{2.5}) and 8-hour ozone (O3) standards. The O3 standard was again revised in March 2008.
Air Quality for Pierce County
Air Quality Index 1980 – 2014

Snohomish County

<table>
<thead>
<tr>
<th>Year</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for Sensitive</th>
<th>Very</th>
<th>All Days</th>
<th>Unhealthy Days</th>
<th>Highest Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
<td>CO</td>
<td>SO₂</td>
<td>O₃</td>
<td>PM</td>
<td>CO</td>
<td>SO₂</td>
</tr>
<tr>
<td>1980</td>
<td>340</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>360</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>1981</td>
<td>350</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>340</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>334</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>277</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>1983</td>
<td>308</td>
<td>56</td>
<td>1</td>
<td>0</td>
<td>191</td>
<td>150</td>
<td>24</td>
</tr>
<tr>
<td>1984</td>
<td>309</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>105</td>
<td>217</td>
<td>44</td>
</tr>
<tr>
<td>1985</td>
<td>300</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td>152</td>
<td>166</td>
<td>47</td>
</tr>
<tr>
<td>1986</td>
<td>324</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>169</td>
<td>148</td>
<td>48</td>
</tr>
<tr>
<td>1987</td>
<td>203</td>
<td>158</td>
<td>3</td>
<td>0</td>
<td>96</td>
<td>250</td>
<td>18</td>
</tr>
<tr>
<td>1988</td>
<td>174</td>
<td>184</td>
<td>8</td>
<td>0</td>
<td>15</td>
<td>345</td>
<td>6</td>
</tr>
<tr>
<td>1989</td>
<td>150</td>
<td>213</td>
<td>2</td>
<td>0</td>
<td>26</td>
<td>338</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>166</td>
<td>197</td>
<td>2</td>
<td>0</td>
<td>29</td>
<td>335</td>
<td>1</td>
</tr>
<tr>
<td>1991</td>
<td>188</td>
<td>176</td>
<td>1</td>
<td>0</td>
<td>32</td>
<td>333</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>180</td>
<td>186</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>332</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>237</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>306</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>294</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>334</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>316</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>294</td>
<td>1</td>
</tr>
<tr>
<td>1996</td>
<td>340</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>299</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>348</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>151</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>353</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>143</td>
<td>219</td>
<td>3</td>
</tr>
<tr>
<td>1999</td>
<td>300</td>
<td>62</td>
<td>3</td>
<td>0</td>
<td>260</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>253</td>
<td>79</td>
<td>5</td>
<td>0</td>
<td>301</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>2001</td>
<td>290</td>
<td>73</td>
<td>2</td>
<td>0</td>
<td>356</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>2002</td>
<td>288</td>
<td>69</td>
<td>8</td>
<td>0</td>
<td>343</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>2003</td>
<td>282</td>
<td>80</td>
<td>3</td>
<td>0</td>
<td>364</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2004</td>
<td>290</td>
<td>74</td>
<td>2</td>
<td>0</td>
<td>364</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2005</td>
<td>288</td>
<td>72</td>
<td>5</td>
<td>0</td>
<td>360</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2006</td>
<td>301</td>
<td>57</td>
<td>7</td>
<td>0</td>
<td>364</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2007</td>
<td>288</td>
<td>70</td>
<td>6</td>
<td>1</td>
<td>365</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>294</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>366</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>269</td>
<td>84</td>
<td>12</td>
<td>0</td>
<td>365</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>324</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>365</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>304</td>
<td>53</td>
<td>8</td>
<td>0</td>
<td>365</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>321</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>366</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>271</td>
<td>92</td>
<td>2</td>
<td>0</td>
<td>365</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>293</td>
<td>68</td>
<td>4</td>
<td>0</td>
<td>365</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Totals 9870 2783 68 22 0 806 4468 236 33 71 19 0

PM = Particulate Matter CO = Carbon Monoxide SO₂ = Sulfur Dioxide O₃ = Ozone # = 1st Occurrence

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀). In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM₂.₅) and 8-hour ozone (O₃) standards. The O₃ standard was again revised in March 2008.
Air Quality for Snohomish County

Year

Days of the Year
0 10 20 30 40 50 60 70 80 90 100

Moderate
Unhealthy for Sensitive Groups
Unhealthy
Monitoring Methods Used from 1999 to 2014 in the Puget Sound Airshed

<table>
<thead>
<tr>
<th>Pollutant Code</th>
<th>Measurement</th>
<th>Method</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bap</td>
<td>Light Absorption by Particles</td>
<td>Light Absorption by Aethalometer</td>
<td>bap (\times 10^{\exp-4}/m)</td>
</tr>
<tr>
<td>Bsp</td>
<td>Light Scattering by Particles</td>
<td>Nephelometer - Heated Inlet</td>
<td>bsp (\times 10^{\exp-4}/m)</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
<td>Gas Nondispersive Infrared Radiation</td>
<td>parts per million</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>Nitrogen Oxides (NO\textsubscript{x})</td>
<td>Chemiluminescence</td>
<td>parts per million</td>
</tr>
<tr>
<td>NO\textsubscript{y}</td>
<td>Nitric Oxide (NO)</td>
<td>Chemiluminescence</td>
<td>parts per million</td>
</tr>
<tr>
<td>NO\textsubscript{y}</td>
<td>Nitrogen Dioxide (NO\textsubscript{2})</td>
<td>Chemiluminescence</td>
<td>parts per million</td>
</tr>
<tr>
<td>NO\textsubscript{y}</td>
<td>Reactive Nitrogen Compounds (NO\textsubscript{x} + other reactive compounds)</td>
<td>Chemiluminescence</td>
<td>parts per billion</td>
</tr>
<tr>
<td>O\textsubscript{3}</td>
<td>Ozone</td>
<td>UV Absorption</td>
<td>parts per million</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
<td>Standard High Volume</td>
<td>micrograms per standard cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{10} ref</td>
<td>PM\textsubscript{10} Reference</td>
<td>Reference - Hi Vol Andersen/GMW 1200</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{10} bam</td>
<td>PM\textsubscript{10} Beta Attenuation</td>
<td>Andersen FH621-N</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{10} teom</td>
<td>PM\textsubscript{10} Teom</td>
<td>R&P Mass Transducer</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{2.5} ref</td>
<td>PM\textsubscript{2.5} Reference</td>
<td>Reference—R&P Partisol 2025</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{2.5} bam</td>
<td>PM\textsubscript{2.5} Beta Attenuation</td>
<td>Andersen FH621-N</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{2.5} teom</td>
<td>PM\textsubscript{2.5} Teom</td>
<td>R&P Mass Transducer</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{2.5} ls</td>
<td>PM\textsubscript{2.5} Nephelometer</td>
<td>Radiance Research M903 Nephelometer</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>PM\textsubscript{2.5} bc</td>
<td>PM\textsubscript{2.5} Black Carbon</td>
<td>Light Absorption by Aethalometer</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
<td>Continuous Instrument Output</td>
<td>percent</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>Sulfur Dioxide</td>
<td>UV Fluorescence</td>
<td>parts per million</td>
</tr>
<tr>
<td>Temp</td>
<td>Temperature</td>
<td>Continuous Instrument Output</td>
<td>degrees F</td>
</tr>
<tr>
<td>TSP</td>
<td>PM Total Hi-Vol</td>
<td>Standard High Volume</td>
<td>micrograms per standard cubic meter</td>
</tr>
<tr>
<td>Vsby</td>
<td>Visual Range</td>
<td>Light Scattering by Nephelometer</td>
<td>miles</td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Speed/ Wind Direction</td>
<td>RM Young 05305 Wind Monitor AQ (old method)</td>
<td>miles per hour/degrees</td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Speed/ Wind Direction</td>
<td>Ultrasonic (new method)</td>
<td>miles per hour/degrees</td>
</tr>
</tbody>
</table>
Historical Air Quality Monitoring Network

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Location</th>
<th>PM$_{10}$ Ref</th>
<th>PM$_{10}$ bam</th>
<th>PM$_{10}$ Teom</th>
<th>PM$_{2.5}$ ref</th>
<th>PM$_{2.5}$ bam</th>
<th>PM$_{2.5}$ teom</th>
<th>PM$_{2.5}$ ls</th>
<th>PM$_{2.5}$ bc</th>
<th>O$_3$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>CO</th>
<th>bsp</th>
<th>Wind</th>
<th>Temp</th>
<th>AT</th>
<th>Vsby</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>Northgate, 310 NE Northgate Way, Seattle (ended Mar 31, 2003)</td>
<td>x</td>
<td></td>
<td>a, d, f</td>
</tr>
<tr>
<td>AQ</td>
<td>Queen Anne Hill, 400 W Garfield St, Seattle (photo/visibility included)</td>
<td></td>
<td>a, d, f</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>4th Ave & Pike St, 1424 4th Ave, Seattle (ended Jun 30, 2006)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>AS</td>
<td>5th Ave & James St, Seattle (ended Feb 28, 2001)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>AU</td>
<td>622 Bellevue Way NE, Bellevue (ended Jul 30, 1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>AZ</td>
<td>Olive Way & Boren Ave, 1624 Boren Ave, Seattle SPECIATION SITE</td>
<td>●</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>● ●</td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
</tr>
<tr>
<td>BF</td>
<td>University District, 1307 NE 45th St, Seattle (ended Jun 30, 2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, d</td>
</tr>
<tr>
<td>BK</td>
<td>10th & Weller, Seattle</td>
<td>●</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU</td>
<td>Highway 410, 2 miles E of Enumclaw (ended Sep 30, 2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>a, e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c, e</td>
</tr>
<tr>
<td>BV</td>
<td>Sand Point, 7600 Sand Pt Way NE, Seattle (ended Aug 31, 2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x, x, x, b, d</td>
</tr>
<tr>
<td>BW/BZ</td>
<td>Beacon Hill, 15th S & Charlestown, Seattle SPECIATION SITE</td>
<td>●</td>
<td>●</td>
<td>x</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, d, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Duwamish, 4752 E Marginal Way S, Seattle SPECIATION SITE</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>x</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>a, e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Woodinville, 17401 133rd Av NE, Woodinville (ended April 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, d, f</td>
</tr>
<tr>
<td>CW</td>
<td>James St & Central Ave, Kent</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CX</td>
<td>17711 Ballinger Way NE, Lake Forest Park (ended Jun 4, 1999)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>a, e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x, x, x, b, d</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Aquatic Center, 601 143rd Ave NE, Bellevue (ended May 31, 2006)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>South Park, 8025 10th Ave S, Seattle (ended Dec 31, 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x, x, b, e, f</td>
</tr>
<tr>
<td>Station ID</td>
<td>Location</td>
<td>PM10 Ref</td>
<td>PM10 bam</td>
<td>PM10 Teom</td>
<td>PM2.5 ls</td>
<td>PM2.5 bc</td>
<td>O2</td>
<td>SO2</td>
<td>NOx</td>
<td>CO</td>
<td>bsp</td>
<td>Wind</td>
<td>Temp</td>
<td>AT</td>
<td>Vsby</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>-------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>17171 Bothell Way NE, Lake Forest Park</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>●</td>
<td>X</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, d, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>305 Bellevue Way NE, Bellevue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>South Park, 8201 10th Ave S, Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, e, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>City Hall, 15670 NE 85th St, Redmond (ended Dec 14, 2005)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>a, d</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>30525 SE Mud Mountain Road, Enumclaw</td>
<td>X</td>
<td>X</td>
<td>●</td>
<td>X</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>X</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>42404 SE North Bend Way, North Bend</td>
<td>X</td>
<td>X</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>c, d, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>2421 148th Ave NE, Bellevue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>b, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>43407 212th Ave SE, 2 mi west of Enumclaw (ended Sep 6, 2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>NE 8th St & 108th Ave NE, Bellevue (ended March 4, 2003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>20050 SE 56th St, Lake Sammamish State Park, Issaquah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>X</td>
<td>X</td>
<td></td>
<td>b, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>504 Bellevue Way NE, Bellevue (ended Sep 30, 1999)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DZ</td>
<td>Georgetown, 6431 Corson Ave S, Seattle (ended August 31, 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>a, d, e, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>Fire Station #12, 2316 E 11th St, Tacoma (ended Dec 31, 2000)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>27th St NE & 54th Ave NE, Tacoma (ended Feb 29, 2000)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, e, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma SPECIATION SITE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>a, e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>South Hill, 9616 128th St E, Puyallup</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>7802 South L St, Tacoma SPECIATION SITE</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>b, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>Tacoma Indian Hill, 5225 Tower Drive NE, northeast Tacoma</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station ID</td>
<td>Location</td>
<td>PM$_{2.5}$ ref</td>
<td>PM$_{2.5}$ Bam</td>
<td>PM$_{2.5}$ Teom</td>
<td>PM$_{2.5}$ ls</td>
<td>PM$_{2.5}$ bc</td>
<td>O$_2$</td>
<td>SO$_2$</td>
<td>NO$_x$</td>
<td>CO</td>
<td>b$_{sp}$</td>
<td>Wind</td>
<td>Temp</td>
<td>AT</td>
<td>Vsby</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Mt Rainier National Park, Jackson Visitor Center</td>
<td></td>
</tr>
<tr>
<td>FH</td>
<td>Charles L Pack Forest, La Grande</td>
<td></td>
<td>c, f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>1101 Pacific Ave, Tacoma (ended Jun 30, 2006)</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Hoyt Ave & 26th St, Everett (ended Feb 29, 2000)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>Marysville JHS, 1605 7th St, Marysville SPECIATION SITE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>20935 59th Place West, Lynnwood (ended Jun 8, 1999)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>6120 212th St SW, Lynnwood</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JN</td>
<td>5810 196th Street, Lynwood (ended Jun 30, 2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JO</td>
<td>Darrington High School, Darrington 1085 Fir St</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>2939 Broadway Ave, Everett (ended March 31, 2003)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JQ</td>
<td>44th Ave W & 196th St SW, Lynnwood (ended May 3, 2004)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>Broadway & Hewitt Ave, Everett (ended May 21, 2000)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QE</td>
<td>Meadowdale, 7252 Blackbird Dr NE, Bremerton</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QF</td>
<td>Lions Park, 6th Ave NE & Fjord Dr, Poulsbo (ended Feb 29, 2000)</td>
<td></td>
<td>b, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QG</td>
<td>Fire Station #51, 10955 Silverdale Way, Silverdale (ended September 4, 2008)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a, d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV</td>
<td>Yelm N Pacific Road, 931 Northern Pacific Rd SE, Yelm</td>
<td></td>
<td>c, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>71 E Campus Dr, Belfair (ended Sep 30, 2004)</td>
<td></td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VK</td>
<td>Fire Station, 709 Mill Road SE, Yelm (ended Oct 2005)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c, f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icon</td>
<td>Description</td>
<td>Parameter</td>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>☀</td>
<td>Station operated by Ecology</td>
<td>SO₂</td>
<td>Sulfur Dioxide</td>
<td></td>
</tr>
<tr>
<td>📏</td>
<td>Shading indicates station functioning</td>
<td>NOₓ</td>
<td>Nitrogen Oxides</td>
<td></td>
</tr>
<tr>
<td>⋄</td>
<td>Indicates parameter currently monitored</td>
<td>CO</td>
<td>Carbon Monoxide</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Indicates parameter previously monitored</td>
<td>bsp</td>
<td>Light scattering by atmospheric particles (nephelometer)</td>
<td></td>
</tr>
<tr>
<td>PM₁₀ ref</td>
<td>Particulate matter <10 micrometers (reference)</td>
<td>Wind</td>
<td>Wind direction and speed</td>
<td></td>
</tr>
<tr>
<td>PM₁₀ bam</td>
<td>Particulate matter <10 micrometers (beta attenuation continuous)</td>
<td>Temp</td>
<td>Air temperature (relative humidity also measured at BW, IG, ES)</td>
<td></td>
</tr>
<tr>
<td>PM₁₀ teom</td>
<td>Particulate matter <10 micrometers (teom continuous)</td>
<td>AT</td>
<td>Air Toxics</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ ref</td>
<td>Particulate matter <2.5 micrometers (reference)</td>
<td>VSBY</td>
<td>Visual range (light scattering by atmospheric particles)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ bam</td>
<td>Particulate matter <2.5 micrometers (beta attenuation continuous)</td>
<td>PHOTO</td>
<td>Visibility (camera)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ teom</td>
<td>Particulate matter <2.5 micrometers (teom-fdms continuous)</td>
<td>O₃</td>
<td>Ozone (May through September)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ ls</td>
<td>Particulate matter <2.5 micrometers (light scattering nephelometer continuous)</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅ bc</td>
<td>Particulate matter <2.5 micrometers black carbon (light absorption aethalometer)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Industrial</td>
</tr>
<tr>
<td>a</td>
<td>Urban Center</td>
</tr>
<tr>
<td>f</td>
<td>Residential</td>
</tr>
<tr>
<td>b</td>
<td>Suburban</td>
</tr>
<tr>
<td>c</td>
<td>Rural</td>
</tr>
<tr>
<td>d</td>
<td>Commercial</td>
</tr>
</tbody>
</table>
Burn Bans 1988 – 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Jan 25 (0830) - Jan 28 (0830)
Feb 5 (1630) - Feb 6 (0930)
Dec 1 (1430) - Dec 2 (0800)
Dec 4 (1430) - Dec 5 (1400)
Dec 16 (1430) - Dec 18 (1430)</td>
</tr>
<tr>
<td>1989</td>
<td>Jan 19 (1430) - Jan 20 (1430)
Jan 24 (1430) - Jan 26 (0930)
Feb 6 (1430) - Feb 8 (0930)
Feb 10 (1430) - Feb 16 (0930)
Nov 29 (1430) - Dec 2 (0930)
Dec 22 (1430) - Dec 23 (1430)</td>
</tr>
<tr>
<td>1990</td>
<td>Jan 19 (1430) - Jan 21 (1430)
Dec 7 (1430) - Dec 8 (0930)
Dec 25 (1430) - Dec 27 (0815)*
(Dec 26 1430 – Dec 27 0815) 2nd Stage</td>
</tr>
<tr>
<td>1991</td>
<td>Jan 5 (1430) - Jan 6 (0930)
Jan 21 (1430) - Jan 24 (1500)
(Jan 22 0930 – Jan 24 1500) 2nd Stage
Jan 29 (1430) - Jan 31 (0830)
Dec 15 (1430) - Dec 17 (1430)
(Dec 16 1430 – Dec 17 0930) 2nd Stage</td>
</tr>
<tr>
<td>1992</td>
<td>Jan 8 (1430) - Jan 9 (0930)
Jan 19 (1430) - Jan 20 (1430)
Feb 5 (1000) - Feb 6 (1430)
Nov 25 (1430) - Nov 26 (1430)</td>
</tr>
<tr>
<td>1993</td>
<td>Jan 11 (1430) - Jan 13 (0830)
Jan 15 (1430) - Jan 16 (0700)
Jan 17 (1430) - Jan 19 (0600)
Jan 31 (1430) - Feb 3 (0830)
Dec 20 (1430) - Dec 21 (1430)
Dec 26 (1430) - Dec 29 (0830)</td>
</tr>
<tr>
<td>1994</td>
<td>None</td>
</tr>
<tr>
<td>1995</td>
<td>Jan 4 - Jan 7</td>
</tr>
<tr>
<td>1996</td>
<td>Feb 14 (1430) - Feb 16 (1630)</td>
</tr>
<tr>
<td>1997</td>
<td>Nov 13 (1500) - Nov 15 (1500)
Dec 4 (1500) - Dec 7 (1800)</td>
</tr>
<tr>
<td>1998</td>
<td>None</td>
</tr>
<tr>
<td>1999</td>
<td>Jan 5 (1400) - Jan 6 (1000)
Dec 29 (1400) - Dec 31 (0600)</td>
</tr>
<tr>
<td>2000</td>
<td>Feb 18 (1400) - Feb 20 (1000)
Nov 15 (1700) - Nov 23 (0600)</td>
</tr>
<tr>
<td>2001</td>
<td>Nov 8 (1400) - Nov 12 (1800)</td>
</tr>
</tbody>
</table>
PARTICULATE MATTER (PM$_{2.5}$) - Federal Reference Method
Micrograms per Cubic Meter

Reference Sampling Method: R&P Partisol 2025 Sampler – Teflon Filter

2014

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Values</th>
<th>Quarterly Arithmetic Averages</th>
<th>Year Arith Mean</th>
<th>98th Percentile</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7802 South L St, Tacoma</td>
<td>344</td>
<td>7.9 4.3 6.2 9.5</td>
<td>7.0</td>
<td>30.0</td>
<td>37.0</td>
</tr>
<tr>
<td>15th S & Charlestown, Beacon Hill, Seattle</td>
<td>118</td>
<td>5.7 4.5 6.9 5.5</td>
<td>5.7</td>
<td>14.6</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Notes:
(1) Sampling occurs for a 24 hour period from midnight to midnight.
Quarterly averages are shown only if 75 percent or more of the data is available.
(2) Annual averages are shown only if there is at least 75 percent of each 4 quarterly averages.
(3) Data from primary sampler at site

Summary of Maximum Observed Concentrations

<table>
<thead>
<tr>
<th>Location</th>
<th>Jul 5 Sat</th>
<th>Nov 19 Wed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7802 South L St, Tacoma</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Beacon Hill</td>
<td>17.2</td>
<td></td>
</tr>
</tbody>
</table>

- - Indicates no sample on specified day

Air Quality Index Summary

<table>
<thead>
<tr>
<th>Location</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for Sensitive Groups</th>
<th>Unhealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>7802 South L St, Tacoma</td>
<td>302</td>
<td>40</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15th S & Charlestown, Beacon Hill, Seattle</td>
<td>111</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
PARTICULATE MATTER (PM2.5) – Continuous -TEOM
Micrograms per Cubic Meter

Equivalent Sampling Methods: Mass Transducer R&P TEOM 1400ab-8500 FDMS – Teflon-coated Glass Fiber

2014

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Values</th>
<th>Quarterly Arithmetic Averages</th>
<th>Year Arith Mean</th>
<th>98th Percentile</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darrington HS, 1085 Fir St, Darrington</td>
<td>355</td>
<td>8.7 2.7 4.5 9.2 6.3 30.5</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td>362</td>
<td>8.8 5.5 8.5 9.0 8.0 27.2</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6120 212th St SW, Lynnwood</td>
<td>352</td>
<td>6.0 3.6 5.5 7.9 5.8 20.9</td>
<td>30.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beacon Hill, 15th S and Charlestown, Seattle</td>
<td>365</td>
<td>5.4 4.9 7.4 6.0 5.9 15.4</td>
<td>27.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duwamish, 4752 E Marginal Way S, Seattle</td>
<td>195</td>
<td>- - 7.3 9.9 - 44.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>James St & Central Ave, Kent</td>
<td>308</td>
<td>7.2 4.0 6.3 7.6 6.3 21.6</td>
<td>38.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7802 South L St, Tacoma</td>
<td>337</td>
<td>8.2 4.7 7.4 10.0 7.6 30.4</td>
<td>40.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce, 3250 Spruce Ave, Bremerton</td>
<td>362</td>
<td>4.4 3.8 5.7 5.2 4.8 12.1</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
(1) Sampling occurs continuously for 24 hours each day.
(2) Quarterly averages are shown only if 75 percent or more of the data for the quarter is available.
(3) Annual averages are shown only if 75 percent or more of the data for each of the 4 quarters is available.
(4) Data from primary sampler at site.

Summary of Maximum Observed Concentrations

<table>
<thead>
<tr>
<th>Location</th>
<th>Jul 4 Fri</th>
<th>Jul 5 Sat</th>
<th>Nov 15 Sat</th>
<th>Nov 18 Tue</th>
<th>Dec 1 Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darrington HS, 1085 Fir St, Darrington</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.8</td>
</tr>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.4</td>
</tr>
<tr>
<td>6120 212th St SW, Lynnwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.3</td>
</tr>
<tr>
<td>Beacon Hill, 15th S and Charlestown, Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.2</td>
</tr>
<tr>
<td>Duwamish, 4401 E Marginal Way S, Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.0</td>
</tr>
<tr>
<td>James St & Central Ave, Kent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.5</td>
</tr>
<tr>
<td>7802 South L St, Tacoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.9</td>
</tr>
<tr>
<td>Spruce, 3250 Spruce Ave, Bremerton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
</tr>
</tbody>
</table>

-- Indicates no sample on specified day
PARTICULATE MATTER (PM2.5) – Continuous - Nephelometer

Micrograms per Cubic Meter

Sampling Method: Equivalent – (R) Radiance Research M903 Nephelometer - (E) Ecotech Nephelometer

2014

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Values</th>
<th>Quarterly Arithmetic Averages</th>
<th>Year Arith Mean</th>
<th>98th Percentile</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
</tr>
<tr>
<td>Darrington HS, 1085 Fir St, Darrington (E)</td>
<td>347</td>
<td>9.5</td>
<td>3.7</td>
<td>5.7</td>
<td>11.1</td>
</tr>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville (E)</td>
<td>282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6120 212th St SW, Lynnwood (E)</td>
<td>365</td>
<td>6.9</td>
<td>4.2</td>
<td>6.2</td>
<td>8.0</td>
</tr>
<tr>
<td>17171 Bothell Way NE, Lake Forest Park (R,E)</td>
<td>364</td>
<td>8.1</td>
<td>4.7</td>
<td>6.9</td>
<td>9.5</td>
</tr>
<tr>
<td>Queen Anne Hill, 400 W Garfield St, Seattle (E)</td>
<td>365</td>
<td>6.5</td>
<td>4.8</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Olive & Boren, Seattle (R,E)</td>
<td>211</td>
<td>7.0</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duwamish, 4752 E Marginal Way S, Seattle (E)</td>
<td>190</td>
<td></td>
<td></td>
<td>9.7</td>
<td>9.8</td>
</tr>
<tr>
<td>South Park, 8025 10th Ave S, Seattle (E)</td>
<td>356</td>
<td>9.5</td>
<td>7.1</td>
<td>9.2</td>
<td>9.8</td>
</tr>
<tr>
<td>305 Bellevue Way NE, Bellevue (R)</td>
<td>295</td>
<td>4.2</td>
<td>4.2</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>42404 SE North Bend Way, North Bend (R,E)</td>
<td>365</td>
<td>4.2</td>
<td>4.4</td>
<td>7.0</td>
<td>9.8</td>
</tr>
<tr>
<td>James St & Central Ave, Kent (E)</td>
<td>365</td>
<td>7.4</td>
<td>5.5</td>
<td>7.9</td>
<td>8.2</td>
</tr>
<tr>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma (E)</td>
<td>360</td>
<td>8.1</td>
<td>5.6</td>
<td>7.5</td>
<td>8.3</td>
</tr>
<tr>
<td>7802 South L St, Tacoma (E)</td>
<td>327</td>
<td>8.2</td>
<td>6.5</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>South Hill, 9616 128th St E, Puyallup (E)</td>
<td>331</td>
<td>8.1</td>
<td>3.7</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Spruce, 3250 Spruce Ave, Bremerton (E)</td>
<td>365</td>
<td>5.0</td>
<td>4.0</td>
<td>5.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Notes

1. Sampling occurs continuously for 24 hours each day.
2. Quarterly averages are shown only if 75 percent or more of the data for the quarter is available.
3. Annual averages are shown only if 75 percent or more of the data for each of the 4 quarters is available.
4. All data values are calculated using site-specific relationships with Federal Reference Method samplers when available.
5. Data from primary sampler at site.

Summary of Maximum Observed Concentrations

<table>
<thead>
<tr>
<th>Location</th>
<th>Jan 25</th>
<th>Jan 27</th>
<th>Jul 5</th>
<th>Aug 11</th>
<th>Nov 15</th>
<th>Nov 18</th>
<th>Nov 1 Mon</th>
<th>Dec 1 Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darrington HS, 1085 Fir St, Darrington</td>
<td>36.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td>--</td>
<td>43.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6120 212th St SW, Lynnwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.3</td>
</tr>
<tr>
<td>17171 Bothell Way NE, Lake Forest Park</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.5</td>
</tr>
<tr>
<td>Queen Anne Hill, 400 W Garfield St, Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.4</td>
</tr>
<tr>
<td>Olive & Boren, Seattle</td>
<td>21.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duwamish, 4752 E Marginal Way S, Seattle</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>26.5</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Park, 8025 10th Ave S, Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.4</td>
</tr>
<tr>
<td>305 Bellevue Way NE, Bellevue</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.4</td>
</tr>
<tr>
<td>42404 SE North Bend Way, North Bend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.5</td>
</tr>
<tr>
<td>James St & Central Ave, Kent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.4</td>
</tr>
<tr>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.2</td>
</tr>
<tr>
<td>7802 South L St, Tacoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.6</td>
</tr>
<tr>
<td>South Hill, 9616 128th St E, Puyallup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.9</td>
</tr>
<tr>
<td>Spruce, 3250 Spruce Ave, Bremerton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.6</td>
</tr>
</tbody>
</table>

- - Indicates no sample on specified day
PM$_{2.5}$ Speciation Analytes Monitored in 2014
Average Annual Concentrations in Micrograms per Cubic Meter

| Parameter | Acceptable PM$_{2.5}$ AQI & Speciation Mass | Aluminum PM$_{2.5}$ Lc | Ammonium Ion PM$_{2.5}$ Lc | Antimony PM$_{2.5}$ Lc | Arsenic PM$_{2.5}$ Lc | Barium PM$_{2.5}$ Lc | Bromine PM$_{2.5}$ Lc | Cadmium PM$_{2.5}$ Lc | Calcium PM$_{2.5}$ Lc | Cerium PM$_{2.5}$ Lc | Cesium PM$_{2.5}$ Lc | Chlorine PM$_{2.5}$ Lc | Chromium PM$_{2.5}$ Lc | Cobalt PM$_{2.5}$ Lc | Copper PM$_{2.5}$ Lc | Indium PM$_{2.5}$ Lc | Iron PM$_{2.5}$ Lc | Lead PM$_{2.5}$ Lc | Magnesium PM$_{2.5}$ Lc | Manganese PM$_{2.5}$ Lc | Nickel PM$_{2.5}$ Lc | Phosphorus PM$_{2.5}$ Lc | Potassium Ion PM$_{2.5}$ Lc | Potassium PM$_{2.5}$ Lc | Rubidium PM$_{2.5}$ Lc | Selenium PM$_{2.5}$ Lc | Silicon PM$_{2.5}$ Lc | Silver PM$_{2.5}$ Lc | Sodium Ion PM$_{2.5}$ Lc | Sodium PM$_{2.5}$ Lc | Strontium PM$_{2.5}$ Lc | Sulfate PM$_{2.5}$ Lc | Sulfur PM$_{2.5}$ Lc | Tin PM$_{2.5}$ Lc | Titanium PM$_{2.5}$ Lc | Total Nitrate PM$_{2.5}$ Lc | Vanadium PM$_{2.5}$ Lc | Zinc PM$_{2.5}$ Lc | Zirconium PM$_{2.5}$ Lc | Elemental Carbon TOR | Organic Carbon TOR | Total Carbonaceous Mass | Soil | Reconstructed Fine Mass - Urban PM$_{2.5}$ |

Additional information can be obtained at: epa.gov/ttn/airs/aqsdatamart/
PM$_{2.5}$ BLACK CARBON
Micrograms per Cubic Meter

Sampling Method: Light Absorption by Aethalometer

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Values</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>Annual Mean</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td>336</td>
<td>1.0</td>
<td>0.5</td>
<td>0.6</td>
<td>0.9</td>
<td>0.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Duwamish, 4401 E Marginal Way S, Seattle</td>
<td>195</td>
<td>---</td>
<td>---</td>
<td>0.9</td>
<td>1.5</td>
<td>---</td>
<td>4.0</td>
</tr>
<tr>
<td>James St & Central Ave, Kent</td>
<td>228</td>
<td>0.8</td>
<td>---</td>
<td>---</td>
<td>1.3</td>
<td>---</td>
<td>5.2</td>
</tr>
<tr>
<td>7802 South L St, Tacoma</td>
<td>351</td>
<td>0.9</td>
<td>0.3</td>
<td>0.5</td>
<td>1.2</td>
<td>0.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma</td>
<td>358</td>
<td>1.3</td>
<td>0.7</td>
<td>1.0</td>
<td>2.1</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>South Hill, 9616 128th St E, Puyallup</td>
<td>263</td>
<td>0.8</td>
<td>0.5</td>
<td>0.9</td>
<td>---</td>
<td>---</td>
<td>2.8</td>
</tr>
<tr>
<td>10th and Weller, Seattle</td>
<td>201</td>
<td>---</td>
<td>---</td>
<td>1.6</td>
<td>1.5</td>
<td>---</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Notes
(1) Sampling occurs continuously for 24 hours each day.
(2) Quarterly averages are shown only if 75 percent or more of the data for the quarter is available.
(3) Annual averages are shown only if 75 percent or more of the data for each of the 4 quarters is available.

Summary of Maximum Observed Concentrations

<table>
<thead>
<tr>
<th>Location</th>
<th>6 Jan Mon</th>
<th>25 Jan Sat</th>
<th>15 Sep Mon</th>
<th>18 Nov Tue</th>
<th>19 Nov Wed</th>
<th>20 Nov Thu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marysville JHS, 1605 7th St, Marysville</td>
<td>3.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Duwamish, 4752 E Marginal Way S, Seattle</td>
<td>--</td>
<td>--</td>
<td>4.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>James St & Central Ave, Kent</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5.2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7802 South L St, Tacoma</td>
<td>--</td>
<td>--</td>
<td>5.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tacoma Tideflats, 2301 Alexander Ave, Tacoma</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.8</td>
<td>--</td>
</tr>
<tr>
<td>South Hill, 9616 128th St E, Puyallup</td>
<td>2.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10th and Weller, Seattle</td>
<td>--</td>
<td>--</td>
<td>4.4</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

-- indicates no sample on specified day
Ozone (parts per million) 2014

<table>
<thead>
<tr>
<th>Location / Continuous Sampling Period(s)</th>
<th>2014 Four Highest Daily 8-Hour Concentrations</th>
<th>4th Highest Daily 8-Hour Concentration</th>
<th>3-Year Average of 4th Highest 8-Hour Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>Date</td>
<td>2012</td>
</tr>
<tr>
<td>Beacon Hill, 15th S & Charlestown Seattle, WA 1 Jan – 31 Dec</td>
<td>.048</td>
<td>20 Apr</td>
<td>.044</td>
</tr>
<tr>
<td>.046</td>
<td>13 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.044</td>
<td>26 Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.044</td>
<td>2 May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20050 SE 56th Lake Sammamish State Park, WA 1 May – 30 Sep</td>
<td>.055</td>
<td>13 Jul</td>
<td>.059</td>
</tr>
<tr>
<td>.054</td>
<td>7 Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.053</td>
<td>26 Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.052</td>
<td>13 May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42404 SE North Bend Way, North Bend, WA 1 May – 30 Sep</td>
<td>.072</td>
<td>12 Jul</td>
<td>.058</td>
</tr>
<tr>
<td>.069</td>
<td>11 Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.061</td>
<td>15 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.060</td>
<td>27 Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30525 SE Mud Mountain Road, Enumclaw, WA 1 May – 30 Sep</td>
<td>.085</td>
<td>12 Jul</td>
<td>.071</td>
</tr>
<tr>
<td>.075</td>
<td>1 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.067</td>
<td>11 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.067</td>
<td>11 Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>931 Northern Pacific Rd SE, Yelm, WA 1 May – 30 Sep</td>
<td>.067</td>
<td>11 Aug</td>
<td>.061</td>
</tr>
<tr>
<td>.058</td>
<td>1 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.056</td>
<td>12 Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.056</td>
<td>10 Aug</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. All ozone stations operated by the Washington State Department of Ecology.
2. Ending times are reported in Pacific Standard Time.
3. For equal concentration values the date and time refer to the earliest occurrences.
4. Continuous sampling periods are those with fewer than 10 consecutive days of missing data.
5. At all stations ozone was measured using the continuous ultraviolet photometric detection method.
REACTIVE NITROGEN

(Parts per Million)

2014

Monthly and Annual Arithmetic Averages

<table>
<thead>
<tr>
<th>Location / Continuous Sampling Periods(s)</th>
<th>1-Hour Average</th>
<th>Value</th>
<th>Date</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon Hill, 15th S & Charlestown, Seattle</td>
<td>REACTIVE NITROGEN</td>
<td>.015</td>
<td>Jan</td>
<td>1000</td>
</tr>
<tr>
<td>1 Jan - 31 Dec</td>
<td>.015</td>
<td>1 Jan</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10th & Weller, Seattle</td>
<td>NITROGEN DIOXIDE</td>
<td>.020</td>
<td>Aug</td>
<td>1700</td>
</tr>
<tr>
<td>1 Jun – 31 Dec</td>
<td>.020</td>
<td>1 Jun</td>
<td>1700</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Ending times are reported in Pacific Standard Time.
2. For equal concentration values the date and time refer to the earliest occurrences.
3. Continuous sampling periods are those with fewer than 10 consecutive days of missing data.
4. Reactive nitrogen and nitrogen dioxide were measured using the continuous chemiluminescence method.
CARBON MONOXIDE
(parts per million)
2014

<table>
<thead>
<tr>
<th>Location / Continuous Sampling Period(s)</th>
<th>Six Highest Concentrations</th>
<th>Number of 8-Hour Averages Exceeding 9 ppm</th>
<th>Number of Days 8-Hour Averages Exceeded 9 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Hour Average</td>
<td>8 Hour Average</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Date</td>
<td>End Time</td>
</tr>
<tr>
<td>1.1</td>
<td>26 Jan</td>
<td>0100</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>25 Jan</td>
<td>1600</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>25 Jan</td>
<td>2300</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>26 Jan</td>
<td>0000</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>26 Jan</td>
<td>0300</td>
<td>0.7</td>
</tr>
<tr>
<td>1.0</td>
<td>4 Dec</td>
<td>0700</td>
<td>0.7</td>
</tr>
<tr>
<td>2.7</td>
<td>18 Nov</td>
<td>1900</td>
<td>2.0</td>
</tr>
<tr>
<td>2.3</td>
<td>18 Nov</td>
<td>2000</td>
<td>2.0</td>
</tr>
<tr>
<td>2.3</td>
<td>18 Nov</td>
<td>2100</td>
<td>1.6</td>
</tr>
<tr>
<td>2.1</td>
<td>17 Nov</td>
<td>0800</td>
<td>1.5</td>
</tr>
<tr>
<td>2.1</td>
<td>18 Nov</td>
<td>1800</td>
<td>1.5</td>
</tr>
<tr>
<td>2.1</td>
<td>18 Nov</td>
<td>2200</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Notes
(1) All carbon monoxide stations operated by the Washington State Department of Ecology.
(2) Ending times are reported in Pacific Standard Time.
(3) For equal concentration values the date and time refer to the earliest occurrences.
(4) Continuous sampling periods are those with fewer than 10 consecutive days of missing data.
(5) At all stations carbon monoxide was measured using the continuous nondispersive infrared method.
Sulfur Dioxide

Monthly and Annual Arithmetic Averages

<table>
<thead>
<tr>
<th>Location / Continuous Sampling Period(s)</th>
<th>1 Hour Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
</tr>
<tr>
<td>Beacon Hill, 15th S & Charlestown, Seattle 1 Jan – 8 Sept</td>
<td>---</td>
</tr>
</tbody>
</table>

Notes

1. Ending times are reported in Pacific Standard Time.
2. For equal concentration values the date and time refer to the earliest occurrences.
3. Did not meet data completeness requirements. Not appropriate to assess highest concentrations for 1 Hour averaging periods.
4. Sulfur dioxide was measured using the continuous ultraviolet fluorescence method.
5. --- indicates no data available.
2014 Beacon Hill Air Toxics Statistical Summary for Air Toxics (units in parts per billion)

<table>
<thead>
<tr>
<th></th>
<th>1,3-Butadiene</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Benzene</th>
<th>Carbon Tetrachloride</th>
<th>Chloroform</th>
<th>Dichloromethane</th>
<th>Ethylbenzene</th>
<th>Ethylene Dichloride</th>
<th>Formaldehyde</th>
<th>Tetrachloroethylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Count</td>
<td>60</td>
<td>61</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>ND's (reported as 0)</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Median (ppb)</td>
<td>0.028</td>
<td>0.300</td>
<td>0.167</td>
<td>0.134</td>
<td>0.107</td>
<td>0.023</td>
<td>0.172</td>
<td>0.038</td>
<td>0.017</td>
<td>0.390</td>
<td>0.009</td>
</tr>
<tr>
<td>Mean (ppb)</td>
<td>0.031</td>
<td>0.384</td>
<td>0.226</td>
<td>0.158</td>
<td>0.107</td>
<td>0.025</td>
<td>0.448</td>
<td>0.055</td>
<td>0.015</td>
<td>0.489</td>
<td>0.010</td>
</tr>
<tr>
<td>95th Percentile (ppb)</td>
<td>0.060</td>
<td>0.868</td>
<td>0.565</td>
<td>0.275</td>
<td>0.122</td>
<td>0.034</td>
<td>0.834</td>
<td>0.142</td>
<td>0.022</td>
<td>1.00</td>
<td>0.021</td>
</tr>
<tr>
<td>Max (ppb)</td>
<td>0.146</td>
<td>1.48</td>
<td>0.655</td>
<td>0.534</td>
<td>0.157</td>
<td>0.042</td>
<td>9.64</td>
<td>0.467</td>
<td>0.023</td>
<td>1.61</td>
<td>0.040</td>
</tr>
<tr>
<td># Below MDL</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>% Below MDL</td>
<td>13%</td>
<td>0%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>17%</td>
<td>0%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Toxics in gray are over 50% below the method detection limit.

2014 Beacon Hill Air Toxics Statistical Summary for Air Toxics (units in nanograms per cubic meter)

<table>
<thead>
<tr>
<th></th>
<th>Arsenic (PM$_{10}$)</th>
<th>Cadmium (PM$_{10}$)</th>
<th>Naphthalene</th>
<th>Nickel (PM$_{10}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Count</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>ND's (reported as 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median (ng/m3)</td>
<td>0.520</td>
<td>0.080</td>
<td>40.8</td>
<td>1.14</td>
</tr>
<tr>
<td>Mean (ng/m3)</td>
<td>0.599</td>
<td>1.29</td>
<td>49.1</td>
<td>1.74</td>
</tr>
<tr>
<td>95th Percentile (ng/m3)</td>
<td>1.45</td>
<td>0.211</td>
<td>92.1</td>
<td>5.04</td>
</tr>
<tr>
<td>Max ng/m3)</td>
<td>1.78</td>
<td>70.7</td>
<td>167</td>
<td>6.17</td>
</tr>
<tr>
<td># Below MDL</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>% Below MDL</td>
<td>17%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Estimates of Air Toxics Risk
2014 Air Toxics Unit Risk Factors

Potential cancer risk is estimated by multiplying the concentration of a pollutant by its unit risk factor (URF), a constant that takes into account its cancer potency. This is shown in the equation below:

Potential cancer risk = ambient concentration (µg/m³) * unit risk factor (risk/µg/m³)

Unit risk factors are often based on epidemiological studies (studies of diseases occurring in human populations) and are also extrapolated from laboratory animal studies. Unit risk factors are typically based on an assumed 70-year (lifetime) exposure interval and are available from multiple sources. Cancer risk was estimated using unit risk factors from the Washington State Acceptable Source Impact Levels (ASIL).¹ The two sources for the ASIL include EPA’s Integrated Risk Information System² (IRIS) as well as California EPA’s Office of Environmental Health and Hazard Assessment³ (OEHHA).⁴ Both of these sources are based on peer-reviewed literature and extensive review. We present potential cancer risk estimates based on the Washington ASIL values (listed below). The cancer rating, based on IARC definitions, refers to its “weight of evidence” ranking: 1 = carcinogenic to humans, 2A = probably carcinogenic to humans, and 2B = possibly carcinogenic to humans.⁵

2014 Air Toxics Unit Risk Factors

<table>
<thead>
<tr>
<th>AIR TOXIC</th>
<th>WA ASIL 460 UNIT RISK FACTOR RISK/µg/m³</th>
<th>CANCER RATING⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>1.7 x 10⁻⁴</td>
<td>1</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>2.7 x 10⁻⁶</td>
<td>2B</td>
</tr>
<tr>
<td>Arsenic</td>
<td>3.3 x 10⁻¹</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.9 x 10⁻⁵</td>
<td>1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>4.2 x 10⁻¹</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>4.2 x 10⁻⁷</td>
<td>2B</td>
</tr>
<tr>
<td>Chloroform</td>
<td>2.3 x 10⁻⁵</td>
<td>2B</td>
</tr>
<tr>
<td>Chromium (Hexavalent)</td>
<td>1.5 x 10⁻¹</td>
<td>1</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1.0 x 10⁻⁶</td>
<td>2B</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>2.5 x 10⁻⁶</td>
<td>2B</td>
</tr>
<tr>
<td>Ethylene Dichloride</td>
<td>2.1 x 10⁻⁵</td>
<td>2B</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>6.0 x 10⁻⁶</td>
<td>1</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>3.4 x 10⁻⁵</td>
<td>2B</td>
</tr>
<tr>
<td>Nickel (Subsulfide)</td>
<td>2.4 x 10⁻⁷</td>
<td>1</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>7.4 x 10⁻⁶</td>
<td>2A</td>
</tr>
</tbody>
</table>

²Integrated Risk Information System, EPA; epa.gov/iris/.
³California EPA, Consolidated Table of OEHHA/ARB-Approved Risk Assessment Health Values, June 25, 2008; arb.ca.gov/toxics/healthval/healthval.htm.
⁴For details on the ASIL, see: ecy.wa.gov/laws-rules/wac173460_400/February/ASIL_20list_20pollutants2-8-08-5pm1.pdf.
2014 Beacon Hill Potential Cancer Risk Estimates per 1,000,000 – 95th Percentile percentage of samples greater than cancer screen value

<table>
<thead>
<tr>
<th>Air Toxic</th>
<th>Rank</th>
<th>Risk based on 95th percentile concentrations (Washington ASIL)</th>
<th>% of samples > ASIL screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Tetrachloride</td>
<td>1</td>
<td>32</td>
<td>100%</td>
</tr>
<tr>
<td>Benzene</td>
<td>2</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>3</td>
<td>23</td>
<td>88%</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4</td>
<td>7</td>
<td>97%</td>
</tr>
<tr>
<td>Arsenic Pm10 Lc</td>
<td>5</td>
<td>5</td>
<td>72%</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>6</td>
<td>4</td>
<td>74%</td>
</tr>
<tr>
<td>Chloroform</td>
<td>6</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>8</td>
<td>3</td>
<td>69%</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>8</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td>Nickel Pm10 Lc</td>
<td>10</td>
<td>2</td>
<td>28%</td>
</tr>
<tr>
<td>Ethylene Dichloride</td>
<td>10</td>
<td>2</td>
<td>88%</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>12</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>Cadmium Pm10 Lc</td>
<td>12</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>12</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>
2014 Non-cancer Reference Concentrations (RfC) and Hazard Indices >1

<table>
<thead>
<tr>
<th>Air toxic</th>
<th>Non-cancer RfC ($\mu g/m^3$)</th>
<th>Mean Hazard Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolein</td>
<td>0.35</td>
<td>1.48</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>9</td>
<td>0.067</td>
</tr>
<tr>
<td>Cadmium (PM$_{10}$)</td>
<td>0.02</td>
<td>0.064</td>
</tr>
<tr>
<td>Manganese (PM$_{10}$)</td>
<td>0.09</td>
<td>0.057</td>
</tr>
<tr>
<td>Arsenic (PM$_{10}$)</td>
<td>0.015</td>
<td>0.040</td>
</tr>
<tr>
<td>Nickel (PM$_{10}$)</td>
<td>0.05</td>
<td>0.035</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>40</td>
<td>0.017</td>
</tr>
<tr>
<td>Benzene</td>
<td>60</td>
<td>0.008</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>140</td>
<td>0.005</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>400</td>
<td>0.004</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>20</td>
<td>0.003</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>35</td>
<td>0.003</td>
</tr>
<tr>
<td>Beryllium (PM$_{10}$)</td>
<td>0.007</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Chloroform</td>
<td>300</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Reference concentrations are based on chronic values from California Air Resources Board (OEHHA). Mean hazard index is based on HQ=1, HI = mean concentration/reference concentration. Acrolein is the only air toxic that fails the screen with a hazard index greater than 1.
The following table includes the statistical information for the potential cancer risk trends found in the data summary, including if the trend is statistically significant.

<table>
<thead>
<tr>
<th>Air Toxic</th>
<th>Significance (p-value)</th>
<th>Slope (change in risk per million per year)</th>
<th>y-intercept</th>
<th>Correlation (R²)</th>
<th>Number of years (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>True (0.005)</td>
<td>-0.797</td>
<td>22.1</td>
<td>0.498</td>
<td>14</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>True (0)</td>
<td>-0.200</td>
<td>4.66</td>
<td>0.804</td>
<td>14</td>
</tr>
<tr>
<td>Arsenic PM10</td>
<td>True (0.046)</td>
<td>-0.079</td>
<td>3.22</td>
<td>0.373</td>
<td>11</td>
</tr>
<tr>
<td>Benzene</td>
<td>True (0)</td>
<td>-2.11</td>
<td>43.5</td>
<td>0.790</td>
<td>14</td>
</tr>
<tr>
<td>Cadmium PM10</td>
<td>False (0.065)</td>
<td>0.465</td>
<td>-2.60</td>
<td>0.363</td>
<td>10</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>False (0.222)</td>
<td>0.207</td>
<td>27.2</td>
<td>0.122</td>
<td>14</td>
</tr>
<tr>
<td>Chloroform</td>
<td>True (0)</td>
<td>-0.272</td>
<td>6.29</td>
<td>0.847</td>
<td>14</td>
</tr>
<tr>
<td>Chromium VI Tsp</td>
<td>True (0.005)</td>
<td>-0.428</td>
<td>9.59</td>
<td>0.754</td>
<td>8</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>False (0.275)</td>
<td>0.162</td>
<td>-0.469</td>
<td>0.194</td>
<td>8</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>False (0.942)</td>
<td>-0.001</td>
<td>0.570</td>
<td>0.001</td>
<td>8</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>True (0.004)</td>
<td>-0.831</td>
<td>14.3</td>
<td>0.517</td>
<td>14</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>False (0.49)</td>
<td>-0.049</td>
<td>2.83</td>
<td>0.100</td>
<td>7</td>
</tr>
<tr>
<td>Nickel PM10</td>
<td>False (0.23)</td>
<td>-0.027</td>
<td>1.38</td>
<td>0.175</td>
<td>10</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>True (0)</td>
<td>-0.060</td>
<td>1.35</td>
<td>0.702</td>
<td>14</td>
</tr>
</tbody>
</table>
AIR QUALITY STANDARDS AND HEALTH GOALS

National Ambient Air Quality Standards (NAAQS)

The Clean Air Act, which was last amended in 1990, requires EPA to set National Ambient Air Quality Standards (40 CFR part 50) for pollutants considered harmful to public health and the environment. The Clean Air Act identifies two types of national ambient air quality standards. Primary standards provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.

EPA has set National Ambient Air Quality Standards for six principal pollutants, called “criteria” pollutants (listed below). Units of measure for the standards are parts per million (ppm) by volume, parts per billion (ppb) by volume, and micrograms per cubic meter of air (µg/m³). EPA is required to re-visit and update standards every five years, to incorporate the latest health and welfare information.

The state of Washington and the Puget Sound region have adopted these standards. For more information, EPA air quality standards and supporting rationale are available at epa.gov/air/criteria.html. Washington State air quality regulations are available at ecy.wa.gov/laws-rules/ecywac.html#air. The air quality standards that apply to the Puget Sound air shed are summarized below.

Puget Sound Region Air Quality Standards for Criteria Pollutants for 2014

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary/Secondary</th>
<th>Averaging Time</th>
<th>Level</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide</td>
<td>primary</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>Not to be exceeded more than once per year</td>
</tr>
<tr>
<td>Lead</td>
<td>primary and secondary</td>
<td>Rolling 3 month average</td>
<td>0.15 µg/m³</td>
<td>Not to be exceeded</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>primary</td>
<td>1-hour</td>
<td>100 ppb</td>
<td>99th percentile of 1-hour daily maximum concentrations, averaged over 3 years</td>
</tr>
<tr>
<td>Ozone</td>
<td>primary and secondary</td>
<td>Annual</td>
<td>53 ppb</td>
<td>Annual Mean</td>
</tr>
<tr>
<td>Particle Pollution</td>
<td>PM₁₀, PM₂.₅</td>
<td>primary and secondary</td>
<td>24-hour</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>primary</td>
<td>1-hour</td>
<td>75 ppb</td>
<td>99th percentile of 1-hour daily maximum concentrations, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td>secondary</td>
<td>3-hour</td>
<td>0.5 ppm</td>
<td>Not to be exceeded more than once per year</td>
</tr>
</tbody>
</table>

(1) The 2011 annual and 24-hour SO2 standards were revoked in that same rulemaking. However, those standards remain in effect until one year after an area is designated for the 2010 standard, except in areas designated nonattainment for the 1977 standards, where the 1977 standards remain in effect until implementation plans to attain or maintain the 2010 standard are approved.

Pollutants typically have multiple standards with different averaging times; for example, daily and annual standards. Multiple standards are created and enforced to address health impacts as a result of a shorter, high-level exposure versus longer, low-level exposures. These differences are addressed pollutant-by-pollutant in the following sections. Additional information is on EPA’s website at epa.gov/air/criteria.html.

The Agency has developed an air quality health goal for daily PM₂.₅ concentrations. The Agency convened a Particulate Matter Health Committee, comprised of local health professionals, who examined the fine particulate health research. The Health Committee did not consider the federal standard at the time to be protective of human health. In 1999, the Agency adopted a health goal of 25 µg/m³ for a daily average, more protective than the current federal standard of 35 µg/m³. This level is consistent with the American Lung Association’s goal and the EPA Clean Air Science Advisory Committee’s recommended lower range for the EPA’s 2006 ambient air quality standard revision. The Agency did not adopt a separate health goal for the annual average.

10 EPA Clean Air Science Advisory Committee (CASAC) Particulate Matter (PM) Review Panel; epa.gov/sab/panels/casacpmpanel.html.
